diff --git a/.appveyor.yml b/.appveyor.yml deleted file mode 100644 index dc302a6..0000000 --- a/.appveyor.yml +++ /dev/null @@ -1,23 +0,0 @@ -environment: - matrix: - - PYTHON: "C:\\Python37" - - PYTHON: "C:\\Python37-x64" - - PYTHON: "C:\\Python38" - - PYTHON: "C:\\Python38-x64" - -branches: - only: - - master - -install: - - "ECHO %PYTHON% %PYTHON_VERSION% %PYTHON_ARCH%" - - "SET PATH=%PYTHON%;%PYTHON%\\Scripts;%PATH%" - - git config --system core.longpaths true - - "%PYTHON%\\python.exe -m pip install -U pip" - - "%PYTHON%\\python.exe -m pip install ." - -build: off - -test_script: - - "%PYTHON%\\python.exe --version" - - "%PYTHON%\\python.exe -m tests" diff --git a/.github/workflows/pythonpackage.yml b/.github/workflows/pythonpackage.yml index 8de5008..4bbcefd 100644 --- a/.github/workflows/pythonpackage.yml +++ b/.github/workflows/pythonpackage.yml @@ -7,8 +7,9 @@ jobs: runs-on: ${{ matrix.os }} strategy: matrix: - os: [ubuntu-latest, macos-latest] - python-version: [3.7, 3.8, 3.9, '3.10', 3.11, 3.12] + os: [ubuntu-latest, macos-latest, windows-latest] + python-version: [3.8, 3.9, '3.10', 3.11, 3.12] + steps: - uses: actions/checkout@v4 - name: Set up Python ${{ matrix.python-version }} @@ -18,7 +19,7 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install kim-edn + pip install kim-edn>1.4.0 pip install coverage - name: Lint with flake8 run: | @@ -26,15 +27,17 @@ jobs: # stop the build if there are Python syntax errors or undefined names flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide - flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics + flake8 . --count --exit-zero --max-complexity=40 --max-line-length=127 --statistics --exclude external - name: Test with unittest run: | python -m tests coverage run -m tests - name: Post Coverage uses: codecov/codecov-action@v4 - if: matrix.os == 'ubuntu-latest' && matrix.python-version == '3.9' + if: matrix.os == 'ubuntu-latest' && matrix.python-version == '3.11' with: - token: ${{ secrets.CODECOV_TOKEN }} verbose: true - + fail_ci_if_error: true + flags: unittests + env: + CODECOV_TOKEN: ${{ secrets.CODECOV_TOKEN }} diff --git a/.github/workflows/pythonpublish.yml b/.github/workflows/pythonpublish.yml index 9b1b4ac..8021e43 100644 --- a/.github/workflows/pythonpublish.yml +++ b/.github/workflows/pythonpublish.yml @@ -9,6 +9,8 @@ jobs: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 + with: + fetch-depth: 0 - name: Set up Python uses: actions/setup-python@v5 with: @@ -16,12 +18,11 @@ jobs: - name: Install dependencies run: | python -m pip install --upgrade pip - pip install build + pip install --upgrade build - name: Build package run: python -m build - name: Publish package - uses: pypa/gh-action-pypi-publish@v1.8.11 + uses: pypa/gh-action-pypi-publish@release/v1.8 with: user: __token__ password: ${{ secrets.PYPI_PASSWORD_OPENKIM }} - diff --git a/MANIFEST.in b/MANIFEST.in index 394d54f..5440541 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -1,4 +1,2 @@ -include LICENSE -include versioneer.py include kim_property/_version.py recursive-include kim_property/properties * diff --git a/README.md b/README.md index d1a9dd7..fdcc53b 100644 --- a/README.md +++ b/README.md @@ -1,7 +1,6 @@ # KIM-PROPERTY utility module [![Python package](https://github.com/openkim/kim-property/workflows/Python%20package/badge.svg)](https://github.com/openkim/kim-property/actions) -[![Windows Build status](https://ci.appveyor.com/api/projects/status/5860x3twnmpwwmsa?svg=true)](https://ci.appveyor.com/project/yafshar/kim-property) [![codecov](https://codecov.io/gh/openkim/kim-property/branch/master/graph/badge.svg)](https://codecov.io/gh/openkim/kim-property) [![Anaconda-Server Badge](https://img.shields.io/conda/vn/conda-forge/kim-property.svg)](https://anaconda.org/conda-forge/kim-property) [![PyPI](https://img.shields.io/pypi/v/kim-property.svg)](https://pypi.python.org/pypi/kim-property) @@ -13,29 +12,32 @@ example a [LAMMPS](https://lammps.sandia.gov/) script) that computes a This utility module has 5 modes: -1- **[Create](#Create)**\ +1- **[Create](#create)**\ Take as input the property instance ID and property definition name and create initial property instance data structure. It checks and indicates whether the property definition exists in [OpenKIM](https://openkim.org/). -2- **[Destroy](#Destroy)**\ +2- **[Destroy](#destroy)**\ Delete a previously created property instance ID. -3- **[Modify](#Modify)**\ +3- **[Modify](#modify)**\ Incrementally build the property instance by receiving keys with associated arguments. It can "append" and add to a key's existing array argument. -4- **[Remove](#Remove)**\ +4- **[Remove](#remove)**\ Remove a key. -5- **[Dump](#Dump)**\ +5- **[Dump](#dump)**\ Take as input the generated instance and a filename, validate each instance against the property definition and either issues an error or writes the instance out to file in edn format. Final validation should make sure all keys/arguments are legal and all required keys are provided. +To get started, you'll need to install the `kim-property` package. Please refer +to the [installation instructions](#installing-kim-property). + ## Create Creating property instances:: @@ -796,30 +798,56 @@ For more information and examples, see the **conda** is the package management tool for Anaconda Python installations. -Installing `kim-property` from the `conda-forge` channel can be achieved by -adding `conda-forge` to your channels with: +Installing `kim-property` from the `conda-forge` channel can be achieved +by adding `conda-forge` to your channels with: ```sh conda config --add channels conda-forge +conda config --set channel_priority strict ``` Once the `conda-forge` channel has been enabled, `kim-property` can be -installed with: +installed with `conda`: ```sh conda install kim-property ``` +or with `mamba`: + +```sh +mamba install kim-property +``` + It is possible to list all of the versions of `kim-property` available on -your platform with: +your platform with `conda`: ```sh conda search kim-property --channel conda-forge ``` +or with `mamba`: + +```sh +mamba search kim-property --channel conda-forge +``` + +Alternatively, `mamba repoquery` may provide more information: + +```sh +# Search all versions available on your platform: +mamba repoquery search kim-property --channel conda-forge + +# List packages depending on `kim-property`: +mamba repoquery whoneeds kim-property --channel conda-forge + +# List dependencies of `kim-property`: +mamba repoquery depends kim-property --channel conda-forge +``` + ## Copyright -Copyright (c) 2020-2023, Regents of the University of Minnesota.\ +Copyright (c) 2020-2024, Regents of the University of Minnesota.\ All Rights Reserved ## Contributing diff --git a/external/README.md b/external/README.md index f3c82d3..faec3f8 100644 --- a/external/README.md +++ b/external/README.md @@ -52,7 +52,10 @@ git submodule update --remote Once you cloned the repository with external submodule and fetch all the latest changes from -[`openkim-properties`](https://github.com/openkim/openkim-properties.git). First, if properties have been added or removed, update the lists ``kim_property_names`` and ``kim_property_ids`` in ``kim_property/pickle.py``. Then, in the package main directory, +[`openkim-properties`](https://github.com/openkim/openkim-properties.git). +First, if properties have been added or removed, update the lists +``kim_property_names`` and ``kim_property_ids`` in ``kim_property/ednify.py``. +Then, in the package main directory, ```sh ├── LICENSE @@ -60,10 +63,9 @@ changes from ├── README.md ├── external ├── kim_property -├── setup.cfg +├── pyproject.toml ├── setup.py -├── tests -└── versioneer.py +└── tests ``` please run python and do as, @@ -71,7 +73,7 @@ please run python and do as, ```sh python >>> import kim_property ->>> kim_property.pickle.pickle_kim_properties() +>>> kim_property.ednify.ednify_kim_properties() ``` Now, you have the latest update from @@ -79,15 +81,11 @@ Now, you have the latest update from **NOTE:** -Suppose you are a developer with write access to the `kim-property` repository +If you are a developer with a write access to the `kim-property` repository and would like to update the property definition with the new updates. In that case, you should commit and publish your changes to the repository and make a new release. This release will update the binary distribution of the package with the latest changes. -Please install the `kim-property` package using pip in the package main -directory, - -```sh -pip install . -``` +To get started, you'll need to install the `kim-property` package. Please refer +to the [installation instructions](../README.md#installing-kim-property). diff --git a/kim_property/__init__.py b/kim_property/__init__.py index 0f77213..31829fa 100644 --- a/kim_property/__init__.py +++ b/kim_property/__init__.py @@ -365,9 +365,7 @@ } ] -""" - -from . import _version +""" # noqa: E501 from .err import KIMPropertyError from .definition import \ @@ -433,5 +431,5 @@ __author__ = 'Yaser Afshar ' +from . import _version # noqa: E402 __version__ = _version.get_versions()['version'] - diff --git a/kim_property/_version.py b/kim_property/_version.py index 6712522..e42dace 100644 --- a/kim_property/_version.py +++ b/kim_property/_version.py @@ -51,7 +51,7 @@ def get_config() -> VersioneerConfig: cfg = VersioneerConfig() cfg.VCS = "git" cfg.style = "pep440" - cfg.tag_prefix = "" + cfg.tag_prefix = "v" cfg.parentdir_prefix = "kim_property-" cfg.versionfile_source = "kim_property/_version.py" cfg.verbose = False diff --git a/kim_property/create.py b/kim_property/create.py index 0cdbb1f..e919653 100644 --- a/kim_property/create.py +++ b/kim_property/create.py @@ -7,7 +7,7 @@ from .err import KIMPropertyError from .definition import check_property_definition from .instance import get_property_id_path, check_instance_id_format -from .pickle import unpickle_kim_properties +from .ednify import unednify_kim_properties __all__ = [ "get_properties", @@ -26,14 +26,14 @@ # Get the standard KIM properties KIM_PROPERTIES, PROPERTY_NAME_TO_PROPERTY_ID, \ - PROPERTY_ID_TO_PROPERTY_NAME = unpickle_kim_properties() + PROPERTY_ID_TO_PROPERTY_NAME = unednify_kim_properties() NEW_PROPERTY_IDS = None """list: Newly added property IDs """ def get_properties(): - """Get the kim properties object hierarchy from the pickled object. + """Get the kim properties object hierarchy from the edn object. Returns: dict -- KIM_PROPERTIES. @@ -116,7 +116,7 @@ def kim_property_create(instance_id, property_name, property_instances=None): Returns: string -- serialized KIM-EDN formatted property instances. - """ + """ # noqa: E501 global KIM_PROPERTIES global PROPERTY_NAME_TO_PROPERTY_ID global PROPERTY_ID_TO_PROPERTY_NAME @@ -168,13 +168,11 @@ def kim_property_create(instance_id, property_name, property_instances=None): # Check to make sure that this property does not exist in OpenKIM if _property_id in KIM_PROPERTIES: msg = 'the input property_name file contains a property ID:\n' - msg += '"{}"\nwhich already '.format(_property_id) - msg += 'exists in the KIM Property Definition list.\n' - msg += 'Use the KIM Property Definition or update the ID in the' - msg += 'property_name file.\n' - msg += 'See the KIM Property Definitions at ' - msg += 'https://openkim.org/properties for more detailed ' - msg += 'information.' + msg += f'"{_property_id}"\nwhich already exists in the KIM ' + msg += 'Property Definition list.\nUse the KIM Property ' + msg += 'Definition or update the ID in the property_name ' + msg += 'file.\nSee the KIM Property Definitions at https://' + msg += 'openkim.org/properties for more detailed information.' raise KIMPropertyError(msg) # Add the new property definition to KIM_PROPERTIES @@ -203,13 +201,10 @@ def kim_property_create(instance_id, property_name, property_instances=None): elif property_name in kim_property_ids: new_property_instance["property-id"] = property_name else: - msg = 'the requested "property_name" :\n' - msg += '"{}"\n'.format(property_name) - msg += 'is not a valid KIM property name nor ' - msg += 'a path-like object to a file.\n' - msg += 'See the KIM Property Definitions at ' - msg += 'https://openkim.org/properties for more detailed ' - msg += 'information.' + msg = f'the requested "property_name" :\n"{property_name}"\nis not' + msg += ' a valid KIM property property name nor a path-like object' + msg += ' to a file.\nSee the KIM Property Definitions at https://' + msg += 'openkim.org/properties for more detailed information.' raise KIMPropertyError(msg) new_property_instance["instance-id"] = instance_id diff --git a/kim_property/definition.py b/kim_property/definition.py index 6b0f8ef..76b2f4b 100644 --- a/kim_property/definition.py +++ b/kim_property/definition.py @@ -72,7 +72,7 @@ def check_key_present(k, s): """ if isinstance(k, str) and isinstance(s, str): if s.find(k) == -1: - msg = 'the required key "{}" is not found.'.format(k) + msg = f'the required key "{k}" is not found.' raise KIMPropertyError(msg) return @@ -107,8 +107,7 @@ def check_property_id_format(s, _m=PROPERTY_ID.match): """ if isinstance(s, str): if _m(s) is None: - msg = 'the "property-id" value :\n' - msg += '{} \n'.format(s) + msg = f'the "property-id" value :\n{s}\n' msg += 'doesn\'t meet the format specification.\n' msg += 'See KIM "property-id" format specification at ' msg += 'https://openkim.org/doc/schema/properties-framework/ ' @@ -132,8 +131,7 @@ def check_property_title_format(s): """ if isinstance(s, str): if s.endswith('.'): - msg = 'the "property-title" value :\n' - msg += '{}\n'.format(s) + msg = f'the "property-title" value :\n{s}\n' msg += 'should not include an ending period.' raise KIMPropertyError(msg) return @@ -156,7 +154,7 @@ def check_required_keys_present(s, rk=required_keys): elif isinstance(s, dict): for r in rk: if r not in s: - msg = 'the required key "{}" is not found.'.format(r) + msg = f'the required key "{r}" is not found.' raise KIMPropertyError(msg) else: msg = 'input to the function is not a `str` ' @@ -182,7 +180,7 @@ def check_key_format(s, _m=KEY_FORMAT.match): """ if isinstance(s, str): if _m(s) is None: - msg = '"{}" is an invalid optional key. '.format(s) + msg = f'"{s}" is an invalid optional key. ' msg += 'A key is a string which only includes lower-case ' msg += 'alphanumeric characters and dashes.' raise KIMPropertyError(msg) @@ -240,22 +238,18 @@ def check_optional_key_extent_format(s, _m=EXTENT_KEY.match, _ws=WHITESPACE.sub) if isinstance(s, str): e = _ws('', s) if _m(e) is None: - msg = 'the specified extent :\n' - msg += '{}\n'.format(s) - msg += 'contains invalid character.' + msg = f'the specified extent :\n{s}\ncontains invalid character.' raise KIMPropertyError(msg) elif isinstance(s, list): for s_ in s: if isinstance(s_, str): if s_ != ':': - msg = 'the specified extent contains ' - msg += 'invalid input "{}".'.format(s_) + msg = f'the specified extent contains invalid input "{s_}".' raise KIMPropertyError(msg) elif isinstance(s_, int): continue else: - msg = 'the specified extent contains ' - msg += 'invalid input "{}".'.format(s_) + msg = f'the specified extent contains invalid input "{s_}".' raise KIMPropertyError(msg) else: @@ -287,7 +281,7 @@ def check_optional_key_extent_scalar(s, _ws=WHITESPACE_EDN.sub): raise KIMPropertyError(msg) -def get_optional_key_extent_ndimensions(l): +def get_optional_key_extent_ndimensions(extent_key): """Get the number of dimensions specified by optional key "extent". Get the number of dimensions specified by optional key "extent", where @@ -295,20 +289,20 @@ def get_optional_key_extent_ndimensions(l): scalar or an array. Arguments: - l {list} -- input "extent"-key value + extent_key {list} -- input "extent"-key value Returns: int -- Number of dimensions """ - if isinstance(l, list): - return len(l) + if isinstance(extent_key, list): + return len(extent_key) msg = 'input to the function is not a `list`.' raise KIMPropertyError(msg) -def get_optional_key_extent_shape(l): +def get_optional_key_extent_shape(extent_key): """Get the shape or dimensions specified by optional key "extent". Get the shape or dimensions specified by optional key "extent", where @@ -317,22 +311,21 @@ def get_optional_key_extent_shape(l): a colon character, ":" would be considered as 1. Arguments: - l {list} -- input "extent"-key value + extent_key {list} -- input "extent"-key value Returns: list -- shape or dimensions as list of integers """ - if isinstance(l, list): + if isinstance(extent_key, list): s = [] - for d in l: + for d in extent_key: if isinstance(d, int): s.append(d) elif d == ':': s.append(1) else: - msg = 'list contains non-standard value ' - msg += '"{}".'.format(d) + msg = f'list contains non-standard value "{d}".' raise KIMPropertyError(msg) return s @@ -357,9 +350,8 @@ def check_property_optional_key_standard_pairs_format(standard_pairs): raise KIMPropertyError(msg) for k in standard_pairs: - if not k in standard_keys: - msg = 'wrong key.\n' - msg += 'The input "{}"-key is not '.format(k) + if k not in standard_keys: + msg = f'wrong key.\nThe input "{k}"-key is not ' msg += 'part of the standard key-value pairs.\n' msg += 'See KIM standard key-value pairs at ' msg += 'https://openkim.org/doc/schema/properties-framework/ ' @@ -370,7 +362,7 @@ def check_property_optional_key_standard_pairs_format(standard_pairs): if not isinstance(standard_pairs["has-unit"], bool): msg = 'invalid value.\n' - msg += 'The input "{}" value '.format(standard_pairs["has-unit"]) + msg += f'The input "{standard_pairs["has-unit"]}" value ' msg += 'should be a boolean that indicates ' msg += 'whether the variable value is physically-dimensioned ' msg += 'and therefore has a physical unit or not.' @@ -379,9 +371,8 @@ def check_property_optional_key_standard_pairs_format(standard_pairs): check_optional_key_extent_format(standard_pairs["extent"]) if not isinstance(standard_pairs["required"], bool): - msg = 'invalid value.\n' - msg += 'The input "{}" value '.format(standard_pairs["required"]) - msg += 'should be a boolean that indicates ' + msg = f'invalid value.\nThe input "{standard_pairs["required"]}" ' + msg += 'value should be a boolean that indicates ' msg += 'whether the variable must be reported in every ' msg += 'property-instance of the property or not.' raise KIMPropertyError(msg) @@ -440,11 +431,9 @@ def check_property_definition(fp, _m=KEY_FORMAT.match): if k not in required_keys: check_property_optional_key_map(k, pd[k], _m=_m) except KIMPropertyError: - msg = '{} \n'.format(fp) - msg += str(KIMPropertyError) + msg = f'{fp} \n' + str(KIMPropertyError) raise KIMPropertyError(msg) else: - msg = 'input to the function :\n' - msg += '{}\n'.format(fp) + msg = f'input to the function :\n{fp}\n' msg += 'is not a correct KIM-EDN type.' raise KIMPropertyError(msg) diff --git a/kim_property/destroy.py b/kim_property/destroy.py index f004f1e..2472bc9 100644 --- a/kim_property/destroy.py +++ b/kim_property/destroy.py @@ -36,7 +36,7 @@ def kim_property_destroy(property_instances, instance_id): Returns: string -- serialized KIM-EDN formatted property instances. - """ + """ # noqa: E501 if not isinstance(instance_id, int): msg = 'the "instance_id" is not an `int`.' raise KIMPropertyError(msg) diff --git a/kim_property/pickle.py b/kim_property/ednify.py similarity index 83% rename from kim_property/pickle.py rename to kim_property/ednify.py index b08e7ad..d920aa2 100644 --- a/kim_property/pickle.py +++ b/kim_property/ednify.py @@ -1,8 +1,8 @@ -"""KIM properties object serialization.""" +"""KIM properties object serialization/de-serialization.""" from os.path import abspath, join, isdir, pardir, isfile, dirname -from io import BytesIO -import pickle +from io import IOBase +from typing import Dict, Optional, Union import kim_edn @@ -10,19 +10,21 @@ from .instance import get_property_id_path __all__ = [ - "pickle_kim_properties", - "unpickle_kim_properties", + "ednify_kim_properties", + "unednify_kim_properties", ] -kim_properties_path = join(dirname(abspath(__file__)), "properties") -"""str: Absolute path to the KIM properties folder.""" +kim_properties_path: str = join(dirname(abspath(__file__)), "properties") +"""Absolute path to the KIM properties folder.""" -def pickle_kim_properties(properties=None, - fp=join(kim_properties_path, - 'kim_properties.pickle'), - protocol=0): +def ednify_kim_properties( + properties: Optional[Dict] = None, + fp: Union[str, bytes, bytearray, IOBase] = join( + kim_properties_path, "kim_properties.edn" + ), +): """Serialize KIM properties. Keyword Arguments: @@ -31,11 +33,9 @@ def pickle_kim_properties(properties=None, fp {string, or a ``.write()``-supporting bytes-like object} -- fp is a file name string to open it or a ``.write()``-supporting bytes-like object. - protocol {int} -- protocol which can be used for pickling. - (default: {0}) """ - # List of KIM properties to be pickled + # List of KIM properties to be ednified kim_properties_list = [] if properties is None: @@ -44,16 +44,18 @@ def pickle_kim_properties(properties=None, # KIM property files path. An absolute path (or a valid relative path) # to the KIM property files folder. - kim_property_files_path = join(dirname(abspath(__file__)), - pardir, - "external", - "openkim-properties", - "properties") + kim_property_files_path = join( + dirname(abspath(__file__)), + pardir, + "external", + "openkim-properties", + "properties", + ) if isdir(abspath(kim_property_files_path)): kim_property_files_path = abspath(kim_property_files_path) else: - msg = 'property files can not be found!' + msg = f"property files can not be found at\n{kim_property_files_path}" raise KIMPropertyError(msg) # KIM property names. @@ -116,7 +118,7 @@ def pickle_kim_properties(properties=None, "unstable-twinning-fault-relaxed-energy-fcc-crystal-npt", "verification-check", "crystal-structure-npt", - "binding-energy-crystal" + "binding-energy-crystal", ] # KIM property full IDs. @@ -125,7 +127,7 @@ def pickle_kim_properties(properties=None, "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt", "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt", "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal", - "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal", + "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal", # noqa: E501 "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal", "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal", @@ -135,22 +137,22 @@ def pickle_kim_properties(properties=None, "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal", "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed", "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed", - "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed", - "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed", - "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed", - "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed", + "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed", # noqa: E501 + "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed", # noqa: E501 + "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed", # noqa: E501 + "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed", # noqa: E501 "tag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed", "tag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt", - "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt", - "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt", + "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt", # noqa: E501 + "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt", # noqa: E501 "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt", - "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt", - "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt", + "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt", # noqa: E501 + "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt", # noqa: E501 "tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt", "tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt", "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal", "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal", - "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal", + "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal", # noqa: E501 "tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt", "tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt", "tag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal", @@ -158,8 +160,8 @@ def pickle_kim_properties(properties=None, "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt", "tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt", "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt", - "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt", - "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt", + "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt", # noqa: E501 + "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt", # noqa: E501 "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt", "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt", "tag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal", @@ -179,7 +181,7 @@ def pickle_kim_properties(properties=None, "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt", "tag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check", "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt", - "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal" + "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal", ] for _id in kim_property_ids: @@ -194,16 +196,15 @@ def pickle_kim_properties(properties=None, del kim_property_files_path # KIM properties dictionary indexed by properties full IDs. - kim_properties = {k: kim_edn.load(v) for k, v in zip( - kim_property_ids, kim_property_files)} + kim_properties = { + k: kim_edn.load(v) for k, v in zip(kim_property_ids, kim_property_files) + } # KIM properties name to full ID dictionary. - property_name_to_property_id = \ - dict(zip(kim_property_names, kim_property_ids)) + property_name_to_property_id = dict(zip(kim_property_names, kim_property_ids)) # KIM properties full ID to name dictionary. - property_id_to_property_name = \ - dict(zip(kim_property_ids, kim_property_names)) + property_id_to_property_name = dict(zip(kim_property_ids, kim_property_names)) del kim_property_names del kim_property_ids @@ -244,28 +245,21 @@ def pickle_kim_properties(properties=None, id_to_property_name, ] - if isinstance(fp, str): - # See if this is a file name - with open(fp, 'wb') as f: - # Pickle the kim_properties - pickle.dump(kim_properties_list, f, protocol=protocol) - else: - try: - pickle.dump(kim_properties_list, fp, protocol=protocol) - except: - msg = 'wrong input. ("fp" should refer to a bytes-like object.)' - raise KIMPropertyError(msg) + kim_edn.dump(kim_properties_list, fp) -def unpickle_kim_properties(fp=join(kim_properties_path, - 'kim_properties.pickle')): +def unednify_kim_properties( + fp: Union[str, bytes, bytearray, IOBase] = join( + kim_properties_path, "kim_properties.edn" + ) +): """Deserialize KIM properties. - Return reconstituted object hierarchy from the pickled object. Read the - pickled representation of an object from the "name" file and return the - reconstituted object hierarchy specified therein. By default, it returns + Return reconstituted object hierarchy from the edn object. Read the + edn representation of an object from the "name" file and return the + reconstituted object hierarchy specified therein. By default, it the "kim_properties", "property_name_to_property_id", and - "property_id_to_property_name" objects. + returns "property_id_to_property_name" objects. Keyword Arguments: fp {string or a ``.read()``-supporting bytes-like object} -- fp is a @@ -276,20 +270,4 @@ def unpickle_kim_properties(fp=join(kim_properties_path, Deserialized KIM properties """ - if isinstance(fp, str): - if isfile(fp): - # See if this is a file name - with open(fp, 'rb') as f: - return pickle.load(f) - - msg = 'wrong input. Can\'t load pickle from unicode string.\n' - msg += 'If "fp" refers to a file name, make sure it exists in PATH ' - msg += 'or provide the file name with its absolute PATH.' - raise KIMPropertyError(msg) - - try: - f = BytesIO(fp) - return pickle.load(f) - except: - msg = 'wrong input. Neither can open nor load the input.' - raise KIMPropertyError(msg) + return kim_edn.load(fp) diff --git a/kim_property/err.py b/kim_property/err.py index 4cf0f50..f0bd468 100644 --- a/kim_property/err.py +++ b/kim_property/err.py @@ -16,7 +16,7 @@ class KIMPropertyError(Exception): """ - def __init__(self, msg): + def __init__(self, msg: str): """Constuctor.""" _msg = '\nERROR(@' + \ inspect.currentframe().f_back.f_code.co_name + '): ' + msg diff --git a/kim_property/instance.py b/kim_property/instance.py index ac442aa..6734b59 100644 --- a/kim_property/instance.py +++ b/kim_property/instance.py @@ -14,7 +14,7 @@ check_key_format, \ check_optional_key_extent_scalar, \ get_optional_key_extent_ndimensions -from .numeric import shape, size +from .numeric import shape __all__ = [ "required_keys", @@ -134,9 +134,9 @@ def check_instance_id_format(instance_id, _m=INSTANCE_ID.match): """ if isinstance(instance_id, int): if _m(str(instance_id)) is None: - msg = 'the "instance-id" = {}, '.format(instance_id) - msg += 'doesn\'t meet the format specification (an integer ' - msg += 'equal to or greater than 1).' + msg = f'the "instance-id" = {instance_id}, doesn\'t meet the ' + msg += 'format specification (an integer equal to or ' + msg += 'greater than 1).' raise KIMPropertyError(msg) else: msg = 'the "instance-id" value is not an `int` ' @@ -231,8 +231,8 @@ def check_instance_optional_key_standard_pairs_format(property_instance_map, raise KIMPropertyError(msg) for k in property_instance_map: - if not k in standard_keys: - msg = 'wrong key.\nThe input "{}"-key is not part of '.format(k) + if k not in standard_keys: + msg = f'wrong key.\nThe input "{k}"-key is not part of ' msg += 'the standard key-value pairs definition.\n' msg += 'See KIM standard key-value pairs at ' msg += 'https://openkim.org/doc/schema/properties-framework/ ' @@ -266,9 +266,9 @@ def check_instance_optional_key_standard_pairs_format(property_instance_map, if instance_ndims != property_ndims: msg = '"source-value"-value number of dimensions = ' - msg += '{}, doesn\'t match '.format(instance_ndims) + msg += f'{instance_ndims}, doesn\'t match ' msg += 'the "extent"-value number of dimensions = ' - msg += '{}.'.format(property_ndims) + msg += f'{property_ndims}.' raise KIMPropertyError(msg) del l_i @@ -314,7 +314,7 @@ def check_instance_optional_key_map(property_instance_key, check_instance_optional_key_standard_pairs_format( property_instance_map, property_definition_map) except KIMPropertyError: - msg = 'in property instance key = "{}"\n'.format(property_instance_key) + msg = f'in property instance key = "{property_instance_key}"\n' msg += str(KIMPropertyError) raise KIMPropertyError(msg) @@ -343,14 +343,14 @@ def check_instance_optional_key_marked_required_are_present( raise KIMPropertyError(msg) for k in property_definition: - if not k in def_required_keys: + if k not in def_required_keys: if property_definition[k]["required"]: - if not k in property_instance: - msg = 'variable "{}" is marked required in the '.format(k) + if k not in property_instance: + msg = f'variable "{k}" is marked required in the ' msg += 'property definition, but it is not present in ' msg += 'the property instance.\nA "required" flag in the ' msg += 'property definition indicates the variable ' - msg += '"{}" must be in the property-instance '.format(k) + msg += f'"{k}" must be in the property-instance ' msg += 'of the property.' raise KIMPropertyError(msg) @@ -461,11 +461,9 @@ def check_property_instances(fi, fp=None, fp_path=None, _m=KEY_FORMAT.match): if pd["property-id"] != pi["property-id"]: msg = 'wrong property definition is provided.\n' - msg += 'Property id :\n' - msg += '{}\n'.format(pd["property-id"]) + msg += f'Property id :\n{pd["property-id"]}\n' msg += 'read from the property definition file is different ' - msg += 'from the property id :\n' - msg += '{}\n'.format(pi["property-id"]) + msg += f'from the property id :\n{pi["property-id"]}\n' msg += 'read from the property instance file.' raise KIMPropertyError(msg) @@ -534,11 +532,9 @@ def check_property_instances(fi, fp=None, fp_path=None, _m=KEY_FORMAT.match): if pd["property-id"] != pi_["property-id"]: msg = 'wrong property definition is provided.\n' - msg += 'Property id :\n' - msg += '{}\n'.format(pd["property-id"]) + msg += f'Property id :\n{pd["property-id"]}\n' msg += 'read from the property definition file is different ' - msg += 'from the property id :\n' - msg += '{}\n'.format(pi_["property-id"]) + msg += f'from the property id :\n{pi_["property-id"]}\n' msg += 'read from the property instance file.' raise KIMPropertyError(msg) diff --git a/kim_property/modify.py b/kim_property/modify.py index dc99ffc..3a026b8 100644 --- a/kim_property/modify.py +++ b/kim_property/modify.py @@ -50,7 +50,7 @@ all values in the source-value array.""" -def kim_property_modify(property_instances, instance_id, *argv): +def kim_property_modify(property_instances, instance_id, *argv): # noqa: C901 """Build the property instance by receiving keys with associated arguments. Incrementally builds the property instance by receiving keys with @@ -115,8 +115,7 @@ def kim_property_modify(property_instances, instance_id, *argv): break if a_property_instance is None: - msg = 'the requested instance id :\n' - msg += '{}\n'.format(instance_id) + msg = f'the requested instance id :\n{instance_id}\n' msg += 'does not match any of the property instances ids.' raise KIMPropertyError(msg) @@ -162,9 +161,9 @@ def kim_property_modify(property_instances, instance_id, *argv): key_name = arg if key_name not in property_def: - msg = 'wrong keyword. The input "{}"-key '.format(key_name) + msg = f'wrong keyword. The input "{key_name}"-key ' msg += 'is not defined in the property definition.\n' - msg += '({})\n'.format(property_def['property-id']) + msg += f'({property_def["property-id"]})\n' msg += 'See the KIM Property Definitions at ' msg += 'https://openkim.org/properties for more detailed ' msg += 'information.' @@ -189,8 +188,8 @@ def kim_property_modify(property_instances, instance_id, *argv): key_name_key = arg i += 1 - if not key_name_key in standard_keys: - msg = 'wrong key. The input "{}"-key is '.format(key_name_key) + if key_name_key not in standard_keys: + msg = f'wrong key. The input "{key_name_key}"-key is ' msg += 'not part of the standard key-value pairs definition.\n' msg += 'See KIM standard key-value pairs at ' msg += 'https://openkim.org/doc/schema/properties-framework/ ' @@ -223,7 +222,7 @@ def kim_property_modify(property_instances, instance_id, *argv): try: float(argv[i]) key_name_value_is_scalar = True - except: + except (ValueError, TypeError, IndexError): pass if key_name_value_is_scalar: @@ -259,9 +258,7 @@ def kim_property_modify(property_instances, instance_id, *argv): if i >= n_arguments: msg = 'there is not enough input ' msg += 'arguments to use.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments failed.\nThe ' if n == 0: msg += 'first ' @@ -270,7 +267,7 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'third ' else: - msg += '{}th '.format(n + 1) + msg += f'{n + 1}th ' msg += 'index is missing from the input ' msg += 'arguments.' raise KIMPropertyError(msg) @@ -279,8 +276,7 @@ def kim_property_modify(property_instances, instance_id, *argv): if re.match(r'^[1-9][0-9]*$', arg) is None: if re.match(r'^[1-9][:0-9]*$', arg) is None: msg = 'requested index ' - msg += '"{}" '.format(arg) - msg += 'doesn\'t meet the format ' + msg += f'"{arg}" doesn\'t meet the format ' msg += 'specification. An integer equal to ' msg += 'or greater than 1 or integer ' msg += 'indices range of "start:stop".' @@ -295,8 +291,7 @@ def kim_property_modify(property_instances, instance_id, *argv): _n = n if arg.count(':') > 1: msg = 'use of indices range as ' - msg += '"{}" '.format(arg) - msg += 'is not accepted.\n' + msg += f'"{arg}" is not accepted.\n' msg += 'The only supported indices ' msg += 'range format is "start:stop".' raise KIMPropertyError(msg) @@ -305,8 +300,7 @@ def kim_property_modify(property_instances, instance_id, *argv): _u = int(u) if _u < _l: msg = 'use of indices range as ' - msg += '"{}" '.format(arg) - msg += 'is not accepted.\n' + msg += f'"{arg}" is not accepted.\n' msg += 'The only supported indices ' msg += 'range format is "start:stop", ' msg += 'where start is less or equal ' @@ -314,16 +308,11 @@ def kim_property_modify(property_instances, instance_id, *argv): raise KIMPropertyError(msg) if key_name_shape[n] > 1 and \ key_name_shape[n] < _u: - msg = 'this dimension has a ' - msg += 'fixed length = ' - msg += '{}'.format(key_name_shape[n]) - msg += ', while, wrong index = ' - msg += '{} '.format(_u) - msg += 'is requested.\nProcessing the ' - msg += '{"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg = 'this dimension has a fixed ' + msg += f'length = {key_name_shape[n]}' + msg += f', while, wrong index = {_u} ' + msg += 'is requested.\nProcessing the {"' + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments, wrong index ' if n == 0: msg += 'at the first ' @@ -332,7 +321,7 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'at the third ' else: - msg += 'at the {}th '.format(n + 1) + msg += f'at the {n + 1}th ' msg += 'dimension is requested.' raise KIMPropertyError(msg) if key_name_shape[n] == 1 and _u > 1: @@ -346,14 +335,10 @@ def kim_property_modify(property_instances, instance_id, *argv): if key_name_shape[n] > 1 and \ key_name_shape[n] < int(arg): msg = 'this dimension has a fixed ' - msg += 'length = {}'.format( - key_name_shape[n]) - msg += ', while, wrong index = {} '.format( - arg) + msg += f'length = {key_name_shape[n]}' + msg += f', while, wrong index = {arg} ' msg += 'is requested.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments, wrong index ' if n == 0: msg += 'at the first ' @@ -362,7 +347,7 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'at the third ' else: - msg += 'at the {}th '.format(n + 1) + msg += f'at the {n + 1}th ' msg += 'dimension is requested.' raise KIMPropertyError(msg) if key_name_shape[n] == 1 and int(arg) > 1: @@ -372,13 +357,10 @@ def kim_property_modify(property_instances, instance_id, *argv): else: msg = 'this dimension has a ' msg += 'fixed length = 1, while, wrong ' - msg += 'index = {} '.format(arg) - msg += 'is requested.\nProcessing the ' - msg += '{"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) - msg += '"} input arguments, wrong index ' + msg += f'index = {arg} is requested.\n' + msg += f'Processing the {{"{key_name}"}}' + msg += f':{{"{key_name_key}"}} input ' + msg += 'arguments, wrong index ' if n == 0: msg += 'at the first ' elif n == 1: @@ -386,7 +368,7 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'at the third ' else: - msg += 'at the {}th '.format(n + 1) + msg += f'at the {n + 1}th ' msg += 'dimension is requested.' raise KIMPropertyError(msg) @@ -419,14 +401,11 @@ def kim_property_modify(property_instances, instance_id, *argv): if i - 1 + _u - _l >= n_arguments: msg = 'there is not enough input ' msg += 'arguments to use.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments failed.\n' - msg += 'We have {} '.format(n_arguments - i + 1) - msg += 'more input arguments while ' - msg += 'at least {} arguments '.format(_u - _l) - msg += 'are required.' + msg += f'We have {n_arguments - i + 1} ' + msg += 'more input arguments while at least ' + msg += f'{_u - _l} arguments are required.' raise KIMPropertyError(msg) if key_name_ndims == 1: @@ -966,9 +945,7 @@ def kim_property_modify(property_instances, instance_id, *argv): if i >= n_arguments: msg = 'there is not enough input ' msg += 'arguments to use.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments failed.\n' msg += 'At least we need one further input.' raise KIMPropertyError(msg) @@ -1099,15 +1076,13 @@ def kim_property_modify(property_instances, instance_id, *argv): # see https://github.com/openkim/kim-property/issues/1 if i < n_arguments: arg = argv[i] - if arg != 'key' and not arg in standard_keys: + if arg != 'key' and arg not in standard_keys: msg = 'two arguments are provided for a scalar ' - msg += 'key. For "{}" in '.format(key_name) - msg += 'property-definition, the ' - msg += '"{}"-key '.format(key_name_key) + msg += f'key. For "{key_name}" in property-' + msg += f'definition, the "{key_name_key}"-key ' msg += 'is scalar, but is provided with two ' - msg += 'arguments: "{}", '.format(argv[i - 1]) - msg += '"{}" (Note: '.format(arg) - msg += 'one can not use index for scalar keys.)' + msg += f'arguments: "{argv[i - 1]}", "{arg}" (Note' + msg += ': one can not use index for scalar keys.)' raise KIMPropertyError(msg) # Set else: @@ -1123,7 +1098,7 @@ def kim_property_modify(property_instances, instance_id, *argv): try: float(argv[i]) key_name_value_is_scalar = True - except: + except (ValueError, TypeError, IndexError): pass if key_name_value_is_scalar: @@ -1153,10 +1128,8 @@ def kim_property_modify(property_instances, instance_id, *argv): if i >= n_arguments: msg = 'there is not enough input ' msg += 'arguments to use.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) - msg += '"} input arguments failed.\nThe ' + msg += f'{key_name}"}}:{{"{key_name_key}"}} ' + msg += 'input arguments failed.\nThe ' if n == 0: msg += 'first ' elif n == 1: @@ -1164,19 +1137,17 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'third ' else: - msg += '{}th '.format(n + 1) + msg += f'{n + 1}th ' msg += 'index is missing from the input arguments.' raise KIMPropertyError(msg) arg = str(argv[i]) if re.match(r'^[1-9][0-9]*$', arg) is None: if re.match(r'^[1-9][:0-9]*$', arg) is None: - msg = 'input value ' - msg += '"{}" doesn\'t meet the '.format(arg) - msg += 'format specification. An integer ' - msg += 'equal to or greater than 1 ' - msg += 'or integer indices range of ' - msg += '"start:stop".' + msg = f'input value "{arg}" doesn\'t meet ' + msg += 'the format specification. An integer ' + msg += 'equal to or greater than 1 or integer ' + msg += 'indices range of "start:stop".' raise KIMPropertyError(msg) else: if _n > -1: @@ -1187,9 +1158,8 @@ def kim_property_modify(property_instances, instance_id, *argv): _n = n if arg.count(':') > 1: msg = 'use of indices range as ' - msg += '"{}" '.format(arg) - msg += 'is not accepted.\nThe only ' - msg += 'supported indices range ' + msg += f'"{arg}" is not accepted.\nThe ' + msg += 'only supported indices range ' msg += 'format is "start:stop".' raise KIMPropertyError(msg) l, u = arg.split(':') @@ -1197,23 +1167,18 @@ def kim_property_modify(property_instances, instance_id, *argv): _u = int(u) if _u < _l: msg = 'use of indices range as ' - msg += '"{}" '.format(arg) - msg += 'is not accepted.\nThe only ' - msg += 'supported indices range format ' - msg += 'is "start:stop", where start ' - msg += 'is less or equal than stop.' + msg += f'"{arg}" is not accepted.\nThe ' + msg += 'only supported indices range ' + msg += 'fomrat is "start:stop", where ' + msg += 'start is less or equal than stop.' raise KIMPropertyError(msg) if key_name_shape[n] > 1 and \ key_name_shape[n] < _u: - msg = 'this dimension has a ' - msg += 'fixed length = ' - msg += '{}'.format(key_name_shape[n]) - msg += ', while, wrong index = ' - msg += '{} is requested.\n'.format(_u) - msg += 'Processing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg = 'this dimension has a fixed ' + msg += f'length = {key_name_shape[n]}' + msg += f', while, wrong index = {_u} is ' + msg += 'requested.\nProcessing the {"' + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments, wrong index ' if n == 0: msg += 'at the first ' @@ -1222,7 +1187,7 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'at the third ' else: - msg += 'at the {}th '.format(n + 1) + msg += f'at the {n + 1}th ' msg += 'dimension is requested.' raise KIMPropertyError(msg) if key_name_shape[n] == 1 and _u > 1: @@ -1235,15 +1200,11 @@ def kim_property_modify(property_instances, instance_id, *argv): if key_name_shape[n] > 1 and \ key_name_shape[n] < int(arg): msg = 'this dimension has a fixed ' - msg += 'length = ' - msg += '{}, '.format(key_name_shape[n]) - msg += 'while, wrong index = ' - msg += '{} is requested.\n'.format(arg) - msg += 'Processing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) - msg += '"} input arguments, wrong index at ' + msg += f'length = {key_name_shape[n]}, while, ' + msg += f'wrong index = {arg} is requested.\n' + msg += f'Processing the {{"{key_name}"}}:{{"' + msg += f'{key_name_key}"}} input arguments, ' + msg += 'wrong index at ' if n == 0: msg += 'the first ' elif n == 1: @@ -1251,21 +1212,17 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'the third ' else: - msg += 'the {}th '.format(n + 1) + msg += f'the {n + 1}th ' msg += 'dimension is requested.' raise KIMPropertyError(msg) if key_name_shape[n] == 1 and int(arg) > 1: if property_def[key_name]["extent"][n] == ':': key_name_shape_new[n] = int(arg) else: - msg = 'this dimension has a ' - msg += 'fixed length = 1, while, wrong ' - msg += 'index = {} '.format(arg) - msg += 'is requested.\n' - msg += 'Processing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) + msg = 'this dimension has a fixed length ' + msg += f'= 1, while, wrong index = {arg} ' + msg += 'is requested.\nProcessing the {"' + msg += f'{key_name}"}}:{{"{key_name_key}' msg += '"} input arguments, wrong index ' if n == 0: msg += 'at the first ' @@ -1274,7 +1231,7 @@ def kim_property_modify(property_instances, instance_id, *argv): elif n == 2: msg += 'at the third ' else: - msg += 'at the {}th '.format(n + 1) + msg += f'at the {n + 1}th ' msg += 'dimension is requested.' raise KIMPropertyError(msg) key_name_index.append(int(arg) - 1) @@ -1304,16 +1261,12 @@ def kim_property_modify(property_instances, instance_id, *argv): if _n > -1: if i - 1 + _u - _l >= n_arguments: - msg = 'there is not enough input ' - msg += 'arguments to use.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) - msg += '"} input arguments failed.\n' - msg += 'We have {} '.format(n_arguments - i + 1) - msg += 'more input arguments while ' - msg += 'at least {} arguments '.format(_u - _l) - msg += 'are required.' + msg = 'there is not enough input arguments' + msg += f'to use.\nProcessing the {{"{key_name}"}}' + msg += f':{{"{key_name_key}"}} input arguments ' + msg += f'failed.\nWe have {n_arguments - i + 1} ' + msg += 'more input arguments while at least ' + msg += f'{_u - _l} arguments are required.' raise KIMPropertyError(msg) if key_name_ndims == 1: @@ -1851,13 +1804,10 @@ def kim_property_modify(property_instances, instance_id, *argv): i += 1 else: if i >= n_arguments: - msg = 'there is not enough input ' - msg += 'arguments to use.\nProcessing the {' - msg += '{}'.format(key_name) - msg += '}:{' - msg += '{}'.format(key_name_key) - msg += '} input arguments failed.\n' - msg += 'At least we need one further input.' + msg = 'there is not enough input arguments to use.' + msg += f'\nProcessing the {{{key_name}}}:{{' + msg += f'{key_name_key}}} input arguments failed.' + msg += '\nAt least we need one further input.' raise KIMPropertyError(msg) if key_name_ndims == 1: @@ -1986,25 +1936,19 @@ def kim_property_modify(property_instances, instance_id, *argv): # see https://github.com/openkim/kim-property/issues/1 if i < n_arguments: arg = argv[i] - if arg != 'key' and not arg in standard_keys: - msg = 'two arguments are provided for a scalar ' - msg += 'key. For "{}" in '.format(key_name) - msg += 'property-definition, the ' - msg += '"{}"-key '.format(key_name_key) - msg += 'is scalar, but is provided with two ' - msg += 'arguments: "{}", '.format(argv[i - 1]) - msg += '"{}" (Note: '.format(arg) - msg += 'one can not use index for scalar keys.)' + if arg != 'key' and arg not in standard_keys: + msg = 'two arguments are provided for a scalar key' + msg += f'. For "{key_name}" in property-definition' + msg += f', the "{key_name_key}"-key is scalar, but' + msg += ' is provided with two arguments: "' + msg += f'{argv[i - 1]}", "{arg}" (Note: one can ' + msg += 'not use index for scalar keys.)' raise KIMPropertyError(msg) else: if i >= n_arguments: - msg = 'there is not enough input arguments ' - msg += 'to use.\nProcessing the {"' - msg += '{}'.format(key_name) - msg += '"}:{"' - msg += '{}'.format(key_name_key) - msg += '"} input arguments failed.\n' - msg += 'At least we need one further input.' + msg = 'there is not enough input arguments to use.\nProcessing' + msg += f' the {{"{key_name}"}}:{{"{key_name_key}"}} input ' + msg += 'arguments failed.\nAt least we need one further input.' raise KIMPropertyError(msg) if key_name_key == 'source-unit': @@ -2017,14 +1961,13 @@ def kim_property_modify(property_instances, instance_id, *argv): # see https://github.com/openkim/kim-property/issues/1 if i < n_arguments: arg = argv[i] - if arg != 'key' and not arg in standard_keys: + if arg != 'key' and arg not in standard_keys: msg = 'two arguments are provided for a key with no ' - msg += 'extent. For "{}" in '.format(key_name) - msg += 'property-definition, the' - msg += '"{}"-key has no extent, '.format(key_name_key) - msg += 'but is provided with two arguments: ' - msg += '"{}", "{}" (Note: '.format(argv[i - 1], arg) - msg += 'one can not use index for keys with no extent.)' + msg += f'extent. For "{key_name}" in property-definition, ' + msg += f'the "{key_name_key}"-key has no extent, but is ' + msg += f'provided with two arguments: "{argv[i - 1]}", ' + msg += f'"{arg}" (Note: one can not use index for keys ' + msg += 'with no extent.)' raise KIMPropertyError(msg) key_name_map[key_name_key] = key_name_value diff --git a/kim_property/numeric.py b/kim_property/numeric.py index 876ea03..d7858d0 100644 --- a/kim_property/numeric.py +++ b/kim_property/numeric.py @@ -27,7 +27,7 @@ def is_array_first_dimension_uniform(arr): u = True s = type(arr[0]) for i in range(1, len(arr)): - u = u and s == type(arr[i]) + u = u and isinstance(arr[i], s) if not u: return False if type(arr[0]) in (list, tuple): @@ -105,7 +105,7 @@ def is_array_uniform(arr): u = True s = type(arr[0]) for i in range(1, len(arr)): - u = u and s == type(arr[i]) + u = u and isinstance(arr[i], s) if not u: return False if type(arr[0]) in (list, tuple): @@ -223,9 +223,9 @@ def extend_full_array(full_array, array_shape, fill_value=None, _shape=shape): for i in range(d0): for j in range(d1): for k in range(d2): - for l in range(d3): - new_array[i][j][k][l][0:d4] = \ - full_array[i][j][k][l][0:d4] + for m in range(d3): + new_array[i][j][k][m][0:d4] = \ + full_array[i][j][k][m][0:d4] return new_array if full_array_ndims == 6: @@ -233,10 +233,10 @@ def extend_full_array(full_array, array_shape, fill_value=None, _shape=shape): for i in range(d0): for j in range(d1): for k in range(d2): - for l in range(d3): - for m in range(d4): - new_array[i][j][k][l][m][0:d5] = \ - full_array[i][j][k][l][m][0:d5] + for m in range(d3): + for n in range(d4): + new_array[i][j][k][m][n][0:d5] = \ + full_array[i][j][k][m][n][0:d5] return new_array msg = 'maximum number of 6 dimensions is supported while ' diff --git a/kim_property/properties/kim_properties.edn b/kim_property/properties/kim_properties.edn new file mode 100644 index 0000000..9f84588 --- /dev/null +++ b/kim_property/properties/kim_properties.edn @@ -0,0 +1 @@ +[{"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" {"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "property-title" "Atomic mass" "property-description" "The atomic mass of the element" "species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Element symbol of the species"} "mass" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Mass of a single atom of the species"}} "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt" "property-title" "Isothermal bulk modulus of a cubic crystal at constant temperature and hydrostatic stress" "property-description" "Isothermal bulk modulus of a cubic crystal at constant temperature and hydrostatic stress." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "isothermal-bulk-modulus" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Isothermal bulk modulus of the cubic crystal at the specified temperature and stress state."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."}} "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt" "property-title" "Isothermal bulk modulus of a hexagonal crystal structure at constant temperature and stress" "property-description" "Isothermal bulk modulus of a hexagonal crystal structure at constant temperature and stress." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vectors and . The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "isothermal-bulk-modulus" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Isothermal bulk modulus of the hexagonal crystal at the specified temperature and stress state."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_3 is in the direction of , and e_2 is in the direction of ( x ). The expected form should be [d d e 0 0 r]."}} "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal" "property-title" "Cohesive energy for a lattice-invariant shear path deformation of a cubic crystal" "property-description" "Cohesive energy versus shear relation along a lattice-invariant deformation path of a cubic crystal at zero absolute temperature. The lattice-invariant shear path is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. All primitive unit cell atomic shifts are energy minimized for each value of the shear parameter." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "shear-direction" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear strain direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system."} "shear-plane-normal" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear strain plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system."} "shear-parameter" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "A vector of shear parameter values in normalized units, such that a shear parameter of zero corresponds to the reference crystal structure, and a shear parameter of one restores the Bravais lattice structure."} "cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of cohesive energy (negative of the potential energy per atom) values for a crystal sheared by the corresponding shear parameter values in the vector shear-parameter."}} "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" "property-title" "Cohesive energy for an unrelaxed lattice-invariant shear path deformation of a cubic crystal" "property-description" "Unrelaxed cohesive energy versus shear relation along a lattice-invariant deformation path of a cubic crystal at zero absolute temperature. The lattice-invariant shear path is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. Unit cell atomic shifts are NOT minimized for each value of the shear parameter." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "shear-direction" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear strain direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system."} "shear-plane-normal" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear strain plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system."} "shear-parameter" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "A vector of shear parameter values in normalized units, such that a shear parameter of zero corresponds to the reference crystal structure, and a shear parameter of one restores the Bravais lattice structure."} "cohesive-potential-energy-unrelaxed" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of the unrelaxed cohesive energy (negative of the potential energy per atom) values for a crystal sheared by the corresponding shear parameter values in the vector shear-parameter."}} "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "property-title" "Cohesive energy versus lattice constant relation for a cubic crystal" "property-description" "Cohesive energy versus lattice constant relation for a cubic crystal at zero absolute temperature. Lattice constants are taken to correspond to the conventional cubic unit cell. Moreover, note that here the cohesive energy is defined as the *negative* of the potential energy per atom." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of conventional unit cell lattice constants of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "Cohesive energy (negative of the potential energy per atom) associated with the corresponding lattice constant."}} "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal" "property-title" "Cohesive energy and stability versus first Piola-Kirchhoff shear stress path of a cubic crystal" "property-description" "Cohesive energy and stability versus first Piola-Kirchhoff (nominal) shear stress path under stress control boundary conditions for a cubic crystal at zero absolute temperature. The applied nominal shear stress is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "shear-direction" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear stress direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system."} "shear-plane-normal" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear stress plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system."} "nominal-shear-stress" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of nominal shear stress, tau, values, defined such that the first Piola-Kirchhoff stress tensor is P = tau * (s \\otimes n + n \\otimes s), where s is the unit vector associated with 'shear-stress-direction' and n is the unit vector associated with 'shear-plane-normal'."} "cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of cohesive energy (negative of the potential energy per atom) values for a crystal sheared by the corresponding shear parameter values in the vector 'nominal-shear-stress'."} "cauchy-born-stability" {"type" "bool" "has-unit" false "extent" [":"] "required" true "description" "A vector of boolean values indicating the Cauchy-Born stability, with respect to the conventional unit cell, of the stressed crystal. Rigid rotation is not considered an instability in this definition."}} "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal" "property-title" "Cohesive free energy of cubic crystal structure at a given temperature under stress-free boundary conditions" "property-description" "Cohesive free energy of a cubic crystal at a given temperature under stress-free boundary conditions." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal at the specified temperature under stress-free boundary conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cohesive-free-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Cohesive free energy of the cubic crystal at the specified temperature under stress-free boundary conditions."}} "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal" "property-title" "Cohesive free energy of hexagonal crystal structure at a given temperature under stress-free boundary conditions" "property-description" "Cohesive free energy of a hexagonal crystal at a given temperature under stress-free boundary conditions." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vectors and at the specified temperature under stress-free boundary conditions. The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector at the specified temperature under stress-free boundary conditions. The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cohesive-free-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Cohesive free energy of the hexagonal crystal at the specified temperature under stress-free boundary conditions."}} "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal" "property-title" "Cohesive energy of two-dimensional layer hexagonal crystal structure at zero temperature under stress-free boundary conditions" "property-description" "Cohesive energy (negative of the potential energy per atom) of a two-dimensional hexagonal crystalline layer at zero temperature under stress-free boundary conditions." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the 2-d hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Length of unit cell vectors and (which are equal for this crystal structure) at zero temperature under stress-free boundary conditions. The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The lattice does not repeat in a third direction, but the basis vector used to define out-of-plane atomic coordinates is taken to be orthogonal to and and equal in length to them. The triad (,,) forms a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by and , the third basis vector, , is taken to be orthogonal to and and equal in length to them, such that the triad (,,) forms a right-handed system. If the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. The first two components of each basis atom should be between zero and one, inclusive of zero. The third component can be any real number, since it is normalized relative to an unrelated in-plane length, and may be positive or negative in order to accomodate the standard Wyckoff positions for layer groups."} "layer-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the layer group associated with the symmetry of the crystal (e.g. p6/mmm for graphene)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 2b is the only entry for graphene). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors and the third basis vector , defined to be perpendicular to the two lattice vectors and equal in length to , such that the triad (,,) forms a right-handed system. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Cohesive energy (negative of the potential energy per atom) of the hexagonal 2-d crystal at zero temperature under stress-free boundary conditions."}} "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal" "property-title" "Cohesive energy of cubic crystal structure at zero temperature under stress-free boundary conditions" "property-description" "Cohesive energy (negative of the potential energy per atom) of a cubic crystal at zero temperature under stress-free boundary conditions." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal at zero temperature under stress-free boundary conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Cohesive energy (negative of the potential energy per atom) of the cubic crystal at zero temperature under stress-free boundary conditions."}} "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal" "property-title" "Cohesive energy of hexagonal crystal structure at zero temperature under stress-free boundary conditions" "property-description" "Cohesive energy (negative of the potential energy per atom) of a hexagonal crystal at zero temperature under stress-free boundary conditions." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vectors and at zero temperature under stress-free boundary conditions. The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector at zero temperature under stress-free boundary conditions. The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Cohesive energy (negative of the potential energy per atom) of the hexagonal crystal at zero temperature under stress-free boundary conditions."}} "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed" "property-title" "Static calculation of an isolated cluster of particles (unrelaxed)" "property-description" "Energy (and, optionally, forces) of an isolated cluster of particles at zero absolute temperature in a fixed configuration." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the system."}} "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed" "property-title" "Static minimization of an isolated cluster of particles" "property-description" "Energy (and, optionally, forces) of an isolated cluster of particles at zero absolute temperature in an unrelaxed configuration and a corresponding relaxed configuration." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the unrelaxed configuration."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "relaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the relaxed configuration."} "relaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in a relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of a relaxed configuration."}} "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed" "property-title" "Static calculation of a non-orthogonal periodic cell of particles (cell fixed, particles fixed)" "property-description" "Energy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles at zero absolute temperature in a fixed configuration." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-3" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 3. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the system."}} "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed" "property-title" "Static minimization of non-orthogonal periodic cell with fixed cell vectors (cell fixed, particles fixed)" "property-description" "Energy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles at zero absolute temperature in an unrelaxed configuration and a corresponding relaxed configuration. The particle positions are allowed to change in the course of relaxation, but the periodic cell vectors are held fixed." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1 in the unrelaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2 in the unrelaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-3" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 3 in the unrelaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the unrelaxed configuration."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the unrelaxed configuration."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the unrelaxed configuration."} "relaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the relaxed configuration."} "relaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in a relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the relaxed configuration."}} "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed" "property-title" "Static calculation of a non-orthogonal periodic cell of particles (cell relaxed, particles fixed)" "property-description" "Energy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles at zero absolute temperature in an unrelaxed configuration and a corresponding relaxed configuration. The periodic cell vectors are allowed to change in the course of relaxation, but the fractional particle positions are held fixed." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-3" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 3 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the unrelaxed configuration."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the unrelaxed configuration. Note that these positions are given in absolute units, but it is the fractional positions of the coordinates that are held fixed when the energy of the periodic cell is minimized with respect to the cell vectors. This means that at the end of the minimization in general the positions are no longer equal to the values stored in this array. Instead the fractional coordinates in the unrelaxed configuration would have to be computed and then multiplied by the relaxed cell vectors to obain the final positions."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the unrelaxed configuration."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the unrelaxed configuration."} "relaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "relaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "relaxed-periodic-cell-vector-3" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 3 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "relaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the relaxed configuration. These forces will not be zero in general since the particle positions are held fixed during minimization."} "relaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the relaxed configuration."}} "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed" "property-title" "Static calculation of a non-orthogonal periodic cell of particles (cell relaxed, particles relaxed)" "property-description" "Energy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles in an unrelaxed configuration and a corresponding relaxed configuration. Both the periodic cell vectors and the particle positions are allowed to change in the course of relaxation." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-periodic-cell-vector-3" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 3 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "unrelaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the unrelaxed configuration."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in an unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in an unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "relaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "relaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "relaxed-periodic-cell-vector-3" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 3 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad."} "relaxed-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the relaxed configuration."} "relaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the relaxed configuration."}} "tag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed" {"property-id" "tag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed" "property-title" "Static calculation of a two-dimensional periodic cell of particles (cell fixed, particles fixed)" "property-description" "Energy (and, optionally, forces and stresses) of a two-dimensional periodic cell of particles at zero absolute temperature with the cell and particles held fixed." "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol for each particle."} "unrelaxed-periodic-cell-vector-1" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 1 must be aligned along the x axis of the Cartesian coordinates (i.e. define it as [a, 0, 0]), where `a' is a positive constant."} "unrelaxed-periodic-cell-vector-2" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [x,y,z] components of periodic cell vector 2 must be defined as [b, c, 0], where `b' is a non-negative constant and `c' is a positive constant"} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle. The cross product of `unrelaxed-periodic-cell-vector-1' and `unrelaxed-periodic-cell-vector-2' determines the positive direction for the z coordinate (assuming the right-hand rule). The x and y coordinates of all the particles should be located in the parallelogram defined by `unrelaxed-periodic-cell-vector-1' and `unrelaxed-periodic-cell-vector-2'."} "unrelaxed-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of the system."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle. The cross product of `unrelaxed-periodic-cell-vector-1' and `unrelaxed-periodic-cell-vector-2' determines the positive direction for the z component (assuming the right-hand rule)."} "unrelaxed-2d-cauchy-stress" {"type" "float" "has-unit" true "extent" [3] "required" false "description" "The [xx,yy,xy] (i.e. [11,22,12]) components of the 2D Cauchy stress conjugate to the shape of the periodic cell."}} "tag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt" "property-title" "Dislocation core energy of a cubic crystal at zero temperature and a given stress state" "property-description" "The dislocation core energy is a mathematical construct designed to remove the singularity in the stress and strain fields of elasticity theory. The total strain energy is computed relative to the cohesive energy of the ideal crystal, and the core energy is the portion of this energy that is not accounted for by an elastic model. In this property, the dislocation core energy for cubic crystals at zero temperature and a given stress state is reported using three different elastic models: nonsingular, isotropic, and anisotropic. Each of these core energies is computed for a range of dislocation core cutoff radii and is given in units of energy per unit dislocation line length." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal."} "slip-plane-miller-indices" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The vector of Miller indices defining the slip plane of the dislocation, e.g. [1, 1, 1]."} "dislocation-line-direction" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The crystallographic direction of the dislocation line direction given as a vector of three integers, e.g. [1, 1, 2]."} "burgers-vector-direction" {"type" "float" "has-unit" false "extent" [3] "required" true "description" "The Burgers vector of the dislocation given as a vector of three real numbers relative to the lattice parameter, e.g. [0.5, 0.5, 0] corresponds to a Burgers vectors of [a/2, a/2, 0]."} "dislocation-core-radius" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "The physical region where atoms present a radically distinct local order with respect to the bulk. This parameter is given in terms of the magnitude of the Burgers vector, e.g. a value of 0.5 defines a core region of radius b/2 where b is the magnitude of the Burgers vector."} "core-energy-nonsingular" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "The core energy calculated using the (isotropic) nonsingular theory of elasticity. This is computed by spreading the Burgers vector isotropically around the dislocation line in the region defined by the core radius. For reference, see W. Cai, A. Arsenlis, C. R. Weinberger, and V. V. Bulatov, A non-singular continuum theory of dislocations, JMPS 54, 561 (2006)."} "core-energy-isotropic" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "The core energy calculated using the classical theory of isotropic elasticity using a finite dislocation core cutoff radius."} "core-energy-anisotropic" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "The core energy calculated using the classical theory of anisotropic elasticity using a finite dislocation core cutoff radius."} "relaxed-core-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] coordinates of each particle after relaxation."}} "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt" "property-title" "Isothermal first strain gradient elastic constants for a cubic crystal at its equilibrium lattice spacing" "property-description" "The three independent isothermal classical elastic constants c11, c12 and c44, and eleven independent isothermal strain gradient elastic constants d-1-1, d-1-2, d-1-3, d-2-2, d-2-3, d-2-4, d-2-5, d-3-3, d-3-5, d-16-16 and d-16-17, for a cubic crystal at 0 K and zero stress. (The classical and strain gradient elastic constants are the 2nd derivatives of the strain energy density with respect to the Lagrangian strain and the Lagrangian strain gradient respectively.)" "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "c11" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 11 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1111 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "c12" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 12 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1122 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "c44" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 44 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 2323 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-1-1" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 1-1 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111111 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-1-2" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 1-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111221 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-1-3" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 1-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111122 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-2-2" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221221 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-2-3" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221122 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-2-4" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221331 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-2-5" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-5 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221133 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-3-3" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 3-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 122122 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-3-5" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 3-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 122133 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-16-16" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-16 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123123 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "d-16-17" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123132 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."}} "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt" "property-title" "Isothermal first strain gradient elastic constants for a hexagonal crystal at its equilibrium lattice spacing" "property-description" "The five independent isothermal classical elastic constants c11, c12, c13, c33, and c55, and twenty two independent isothermal strain gradient elastic constants d-1-1, d-6-6, d-6-7, d-6-8, d-6-9, d-6-10, d-7-7, d-8-9, d-8-10, d-9-9, d-9-10, d-10-10, d-11-11, d-11-12, d-11-13, d-12-12, d-12-13, d-13-13, d-16-16, d-16-17, d-17-17, and d-17-18, for a hexagonal simple lattice at 0 K and zero stress. The orientation of the lattice is such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. (The classical and strain gradient elastic constants are the 2nd derivatives of the strain energy density with respect to the Lagrangian strain and the Lagrangian strain gradient respectively.)" "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the hexagonal crystal."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "c11" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 11 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1111 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon."} "c12" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 12 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1122 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon."} "c13" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 13 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1133 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon."} "c33" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 33 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 3333 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon."} "c55" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 55 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1313 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon."} "d-1-1" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 1-1 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111111 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-6-6" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 1-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222222 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-6-7" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 1-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222112 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-6-8" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222121 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-6-9" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222332 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-6-10" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-7-7" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 2-5 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 112112 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-8-9" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 3-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 121332 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-8-10" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 3-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 121233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-9-9" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-16 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 332332 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-9-10" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 332233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-10-10" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 233233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-11-11" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 333333 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-11-12" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 333113 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-11-13" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 333131 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-12-12" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 113113 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-12-13" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 113131 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-13-13" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 131131 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-16-16" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123123 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-16-17" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123132 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-17-17" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 132132 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."} "d-17-18" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 132231 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal."}} "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt" "property-title" "Isothermal elastic constants for a cubic crystal at constant temperature and stress" "property-description" "The three independent isothermal elastic constants c11, c12 and c44 for a cubic crystal at a constant given temperature and stress. (The elastic constants are the 2nd derivatives of the strain energy density with respect to strain.)" "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "c11" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 11 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1111 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "c12" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 12 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1122 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "c44" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The 44 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 2323 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal."} "excess" {"type" "float" "has-unit" true "extent" [] "required" false "description" "Total square numerical asymmetry of the calculated elastic constants, in Voigt notation, \\sqrt{ \\sum_{i>j} (\\C_{ij} - \\C_{ji})^2 }"}} "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt" "property-title" "Enthalpy of Mixing versus Concentration for Substitutional Random Binary A-B Cubic Crystal Alloys under NPT Conditions" "property-description" "Enthalpy of mixing per atom versus concentration for a random solid solution binary alloy of species A and B at constant pressure and temperature. The enthalpy of mixing per atom is defined as the enthalpy of the binary alloy less the enthalpies of each species in the same crystal structure normalized by the number of atoms. This property is defined for the case where at zero concentration the crystal consists entirely of A atoms, and at concentration one, the crystal is entirely of species B. At each concentration the potential energy of the binary alloy is minimized." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type for both the crystal made of A atoms, the crystal made of B atoms, and the random alloy."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "A-species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The element symbol of the A-type atom."} "A-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The lattice constant of the A-type crystal."} "A-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the A-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "B-species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The element symbol of the B-type atom."} "B-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The lattice constant of the B-type crystal."} "B-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the B-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [":"] "required" false "description" "A vector of the conventional unit cell lattice constants of the cubic crystal at each concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). At the concentration corresponding to all A-type atoms, the value in this array should be identical to the value of the 'A-a' key; similarly, at the concentration corresponding to all B-type atoms, the value in this array should be identical to the value of the 'B-a' key."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x )."} "concentration" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "The fraction of lattice sites occupied by B atoms with the rest occupied by A atoms. For example, a concentration of 0 means all lattice sites are occupied by A atoms, and a concentration of 1 means all lattice sites are occupied by B atoms. The concentration must be in the range [0,1]."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "enthalpy-of-mixing" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "Enthalpy of mixing per atom associated with the\n corresponding concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). Enthalpy of mixing per atom is defined as H_mix = H_A+B - (N_A*H_A - N_B*H_B)/(N_A + N_B), where H_A+B is the average enthalpy of mixing per atom of the random alloy at a given concentration, H_A is the enthalpy of mixing per atom of the crystal when entirely made of A atoms, H_B is the enthalpy of mixing per atom of the crystal when entirely made of B atoms, N_A is the number of A atoms, N_B is the number of B atoms. The total number of atoms is N_A + N_B."} "crystal-is-stable" {"type" "bool" "has-unit" false "extent" [":"] "required" true "description" "If true, the crystal at the corresponding concentration is locally stable with respect to both macroscopic modes (Cauchy-Born stability) and microscopic modes (phonon stability). Local stability implies the existence of a barrier to reach other stable states. The order of elements in this array must correspond to the order of the entries listed in 'concentration'."}} "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt" {"property-id" "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt" "property-title" "Enthalpy of Mixing versus Concentration for Substitutional Random Binary A-B Cubic Crystal Alloys under NVT Conditions" "property-description" "Enthalpy of mixing per atom versus concentration for a random solid solution binary alloy of species A and B at constant volume and temperature. The enthalpy of mixing per atom is defined as the enthalpy of the binary alloy less the enthalpies of each species in the same crystal structure normalized by the number of atoms. This property is defined for the case where at zero concentration the crystal consists entirely of A atoms, and at concentration one, the crystal is entirely of species B. At each concentration the potential energy of the binary alloy is minimized." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type for both the crystal made of A atoms, the crystal made of B atoms, and the random alloy."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "A-species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The element symbol of the A-type atom."} "A-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The lattice constant of the A-type crystal."} "A-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the A-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "B-species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The element symbol of the B-type atom."} "B-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The lattice constant of the B-type crystal."} "B-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the B-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of conventional unit cell lattice constants of the cubic crystal that are used at each concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). At the concentration corresponding to all A-type atoms, the value in this array should be identical to the value of the 'A-a' key; similarly, at the concentration corresponding to all B-type atoms, the value in this array should be identical to the value of the 'B-a' key."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [":" 6] "required" false "description" "A two-dimensional array containing the [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the crystal at each concentration. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The six-dimensional vectors collected this key should be ordered so as to be consistent with the entries listed in 'concentration'."} "concentration" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "The fraction of lattice sites occupied by B atoms with the rest occupied by A atoms. For example, a concentration of 0 means all lattice sites are occupied by A atoms, and a concentration of 1 means all lattice sites are occupied by B atoms. The concentration must be in the range [0,1]."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "enthalpy-of-mixing" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "Enthalpy of mixing per atom associated with the corresponding concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). Enthalpy of mixing per atom is defined as H_mix = H_A+B - (N_A*H_A - N_B*H_B)/(N_A + N_B), where H_A+B is the average enthalpy of mixing per atom of the random alloy at a given concentration, H_A is the enthalpy of mixing per atom of the crystal when entirely made of A atoms, H_B is the enthalpy of mixing per atom of the crystal when entirely made of B atoms, N_A is the number of A atoms, N_B is the number of B atoms. The total number of atoms is N_A + N_B."} "crystal-is-stable" {"type" "bool" "has-unit" false "extent" [":"] "required" true "description" "If true, the crystal at the corresponding concentration is locally stable with respect to both macroscopic modes (Cauchy-Born stability) and microscopic modes (phonon stability). Local stability implies the existence of a barrier to reach other stable states. The order of elements in this array must correspond to the order of the entries listed in 'concentration'."}} "tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "property-title" "Relaxed extrinsic stacking fault energy for a monoatomic fcc crystal at a zero temperature and a given pressure" "property-description" "The extrinsic stacking fault (ESF) energy for a monoatomic fcc crystal at zero temperature and a specified pressure. The ESF corresponds to an ABC|BA|BC stacking, which can also be understood as a two-layer twin nucleus. Relaxation of the atomic coordinates is performed in the direction perpendicular to the fault plane." "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Zero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the fcc crystal material. This should contain only a single entry."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "extrinsic-stacking-fault-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The relaxed extrinsic stacking fault energy in units of energy per area."}} "tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt" "property-title" "The relaxed gamma surface created by rigid slip of a (111) plane on a grid of points defined by [112] and [-110] directions in a monoatomic fcc crystal at zero temperature and a given pressure" "property-description" "The relaxed energy-per-area versus all possible slips lying in the (111) lattice plane defines the Gamma surface. Due to periodicity of the crystal lattice, it suffices to sample a grid of points that span a*sqrt(6)/2 and a*sqrt(2)/2 along the [112] and [-110] directions, respectively. This is achieved through a sequence of rigid displacements applied to one part of an fcc crystal relative to another on the (111) plane on a grid defined by the [112] and [-110] directions at zero temperature and a specified pressure. Following each slip displacement, a relaxation of the atomic coordinates is performed in the direction perpendicular to the slip plane to arrive at the energy-per-area." "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Zero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the fcc crystal material. This should contain only a single entry."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "fault-plane-shift-fraction-112" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "A list of relative displacements of the two crystal parts used to compute the gamma surface in the [112] direction. Each element corresponds to the relative displacement of the two crystal parts as a fraction of the the total displacement, a*sqrt(6)/2 in the [112] direction."} "fault-plane-shift-fraction-110" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "A list of relative displacements of the two crystal parts used to compute the gamma surface in the [-110] direction. Each element corresponds to the relative displacement of the two crystal parts as a fraction of the the total displacement, a*sqrt(2)/2 in the [-110] direction."} "gamma-surface" {"type" "float" "has-unit" true "extent" [":" ":"] "required" true "description" "The relaxed excess energy-per-area of the fault plane for a given relative displacement of the two crystal parts. All of the elements in a given sub-array contained within this array correspond to a single fractional displacement in the [-110] direction, but different fractional displacements in the [112] direction. That is, if each sub-array contained in this array is taken to be a column in a matrix, the rows of this matrix would correspond to the elements in 'fault-plane-shift-fraction-112' and its columns would correspond to the elements of 'fault-plane-shift-fraction-110'."}} "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal" {"property-id" "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal" "property-title" "Ideal symmetric tilt grain boundary energy for a cubic crystal" "property-description" "The unrelaxed energy of a grain boundary for a cubic bi-crystal characterized by a symmetric tilt axis and angle for zero applied loads." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "tilt-axis" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The crystallographic direction of the tilt axis. Valid options are directions belonging to the following families: <001>, <110>, <111>, <112>."} "tilt-angle" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Total misorientation angle between the two grains. Must be strictly greater than zero and strictly less than 180 degrees."} "interface-offset" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Details of the location of the grain boundary interface plane within the unit cells of the grains for crystals containing more than one basis atom. Since there is no standard notation for this, it is specified as a free text field."} "minimum-atom-separation" {"type" "float" "has-unit" true "extent" [] "required" false "description" "The minimal atomic separation in the bi-crystal. This parameter is necessary for characterizing the grain boundary, since when computing a grain boundary energy it is conventional to prevent situations where a pair of atoms are too close together by removing one of them. (Note that in such cases all removed atoms must be taken from the same grain.) In situations where the minimum atom separation is unknown (e.g., experimental data), use the perfect crystal nearest neighbor distance."} "ideal-grain-boundary-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Unrelaxed grain boundary excess energy density (energy per unit area), i.e. the difference between the energy of the bi-crystal containing the symmetric tilt grain boundary structure and the perfect crystal per unit area of the interface."} "sigma" {"type" "int" "has-unit" false "extent" [] "required" false "description" "Sigma is the ratio of volume of the coincident-site lattice unit cell to the lattice unit cell volume."}} "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal" {"property-id" "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal" "property-title" "Relaxed symmetric tilt grain boundary energy for a cubic crystal" "property-description" "The relaxed energy of a grain boundary for a cubic bi-crystal characterized by a symmetric tilt axis and angle for zero applied loads." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "tilt-axis" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The crystallographic direction of the tilt axis. Valid options are directions belonging to the following families: <001>, <110>, <111>, <112>."} "tilt-angle" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Total misorientation angle between the two grains. Must be strictly greater than zero and strictly less than 180 degrees."} "interface-offset" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Details of the location of the grain boundary interface plane within the unit cells of the grains for crystals containing more than one basis atom. Since there is no standard notation for this, it is specified as a free text field."} "minimum-atom-separation" {"type" "float" "has-unit" true "extent" [] "required" false "description" "The minimal atomic separation in the initial unrelaxed bi-crystal. This parameter is necessary for characterizing the grain boundary, since when computing a grain boundary energy it is conventional to prevent situations where a pair of of atoms are too close together by removing one of them. (Note that in such cases all removed atoms must be taken from the same grain.) In situations where the minimum atom separation is unknown (e.g., experimental data), use the perfect crystal nearest neighbor distance."} "relaxed-grain-boundary-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Relaxed grain boundary excess energy density (energy per unit area), i.e. the difference between the ground state energy of the bi-crystal containing the symmetric tilt grain boundary structure and the energy of an ideal crystal with the same number of atoms per unit area of the interface."} "relaxed-interface-positions" {"type" "file" "has-unit" false "extent" [] "required" false "description" "A file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle after relaxation, and super-cell periodicity data for the computed grain boundary."} "sigma" {"type" "int" "has-unit" false "extent" [] "required" false "description" "Sigma is the ratio of volume of the coincident-site lattice unit cell to the lattice unit cell volume."}} "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal" {"property-id" "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal" "property-title" "Relaxed symmetric tilt grain boundary energy versus tilt angle relation for a cubic crystal" "property-description" "The relaxed energy versus tilt angle relation of a grain boundary for a cubic bi-crystal characterized by a symmetric tilt axis and angle for zero applied loads." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "tilt-axis" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The crystallographic direction of the tilt axis. Valid options are directions belonging to the following families: <001>, <110>, <111>, <112>."} "tilt-angle" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "Vector of total misorientation angles between the two grains. Each element must be between zero and 180 degrees. The order of the entries must correspond to the order of the entries in other vector key quantities as stated."} "interface-offset" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Vector of the details of the location of the grain boundary interface plane within the unit cells of the grains for crystals containing more than one basis atom. Since there is no standard notation for this, it is specified as a free text field. The order of the entries must correspond to the order of the entries in 'tilt-angle'."} "minimum-atom-separation" {"type" "float" "has-unit" true "extent" [":"] "required" false "description" "Vector of the minimal atomic separation in the initial unrelaxed bi-crystals. This parameter is necessary for characterizing the grain boundary, since when computing a grain boundary energy it is conventional to prevent situations where a pair of of atoms are too close together by removing one of them. (Note that in such cases all removed atoms must be taken from the same grain.) In situations where the minimum atom separation is unknown (e.g., experimental data), use the perfect crystal nearest neighbor distance. The order of the entries must correspond to the order of the entries in 'tilt-angle'."} "relaxed-grain-boundary-energy" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "Vector of relaxed grain boundary excess energy densities (energy per unit area), i.e. the difference between the ground state energy of the bi-crystal containing the symmetric tilt grain boundary structure and the energy of an ideal crystal with the same number of atoms per unit area of the interface. The order of the entries must correspond to the order of the entries in 'tilt-angle'."} "relaxed-interface-positions" {"type" "file" "has-unit" false "extent" [":"] "required" false "description" "A file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle after relaxation, and super-cell periodicity data for the computed grain boundary. The order of listed files must correspond to the order of entries in 'tilt-angle'."} "sigma" {"type" "int" "has-unit" false "extent" [":"] "required" false "description" "Sigma is the ratio of volume of the coincident-site lattice unit cell to the lattice unit cell volume. The order of the entries must correspond to the order of the entries in 'tilt-angle'."}} "tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "property-title" "Relaxed intrinsic stacking fault energy for a monoatomic fcc crystal at zero temperature and a given pressure" "property-description" "The intrinsic stacking fault (ISF) energy for a monoatomic fcc crystal at zero temperature and a specified pressure. The ISF corresponds to a fault of the form ABC|BCA. Relaxation of the atomic coordinates is performed in the direction perpendicular to the fault plane." "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Zero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the fcc crystal material. This should contain only a single entry."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "intrinsic-stacking-fault-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The relaxed intrinsic stacking fault energy in units of energy per area."}} "tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt" "property-title" "Linear thermal expansion coefficient of a cubic crystal structure at given temperature and pressure" "property-description" "Linear thermal expansion coefficient of a cubic crystal structure at given temperature and pressure, calculated from (change-in-length)/(original-length)/(change-in-temperature)." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "linear-thermal-expansion-coefficient" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Linear thermal expansion coefficient."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."}} "tag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal" "property-title" "Melting temperature of a cubic crystal structure at a given hydrostatic stress" "property-description" "Melting temperature of a cubic crystal structure at a given hydrostatic stress. This is the temperature at which the crystal and liquid are in thermal equilibrium." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type at initialization."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal at the melting temperature under the given hydrostatic conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the initial basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of Wyckoff sites (e.g. 4a, 2b) needed to generate the starting cubic crystal lattice. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-coordinates' and 'wyckoff-species'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the Wyckoff sites needed to generate the starting cubic crystal lattice, given as fractions of the crystal lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-multiplicity-and-letter' and 'wyckoff-species'."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the Wyckoff sites used to describe the starting cubic crystal structure. The order of the entries must correspond to the order of the entries in 'wyckoff-coordinates' and 'wyckoff-multiplicity-and-letter'."} "melting-temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Melting temperature of the cubic equilibrium crystal structure at the specified hydrostatic stress state."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the system. Does not descriminate between stress in the liquid and stress in the solid. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."}} "tag:staff@noreply.openkim.org,2014-04-15:property/monovacancy-formation-energy-monoatomic-cubic-diamond" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/monovacancy-formation-energy-monoatomic-cubic-diamond" "property-title" "Formation energy of a monovacancy in a monoatomic cubic diamond crystal at zero absolute temperature" "property-description" "Unrelaxed and relaxed formation potential energies of a monovacancy in a monoatomic cubic diamond crystal with stress-free boundary conditions at zero absolute temperature." "species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The element symbol of the atoms."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium (conventional) lattice constant of the perfect cubic diamond crystal (i.e. without the monovacancy introduced) at zero absolute temperature under zero stress conditions."} "unrelaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the initial unrelaxed configuration. Corresponds to the initial guess used in the minimization."} "unrelaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the initial unrelaxed configuration."} "unrelaxed-formation-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Formation potential energy of the monovacancy in the unrelaxed configuration."} "relaxed-configuration-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" true "description" "The [x,y,z] coordinates of each particle in the relaxed configuration."} "relaxed-configuration-forces" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] components of the force on each particle in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation."} "relaxed-formation-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Formation potential energy of the monovacancy in the relaxed configuration."}} "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt" "property-title" "Formation free energy of a neutral monovacancy in a general crystal at finite temperature and stress" "property-description" "Gibbs free energy of formation of a neutral monovacancy in a (possibly multispecies) infinite host crystal lattice at a specific temperature and stress state relative to a given infinite monoatomic reference lattice ('reservoir') at a possibly different temperature and stress state." "formation-free-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The Gibbs free energy of formation associated with extracting the 'host-removed-atom' from the host crystal at the specified temperature and stress and adding it to a reservoir crystal at a possibly different temperature and stress."} "reservoir-cohesive-free-energy" {"type" "float" "has-unit" true "extent" [] "required" false "description" "The cohesive free energy (negative of the potential energy per atom) of the reservoir crystal under the specified temperature and stress conditions."} "host-removed-atom" {"type" "int" "has-unit" false "extent" [] "required" true "description" "The index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal."} "host-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the host crystal type (e.g. fcc, bcc, diamond)."} "host-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "host-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'."} "host-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'."} "host-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'."} "host-temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the host crystal."} "host-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."} "reservoir-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the reservoir crystal type (e.g. fcc, bcc, diamond)."} "reservoir-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the reservoir crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the reservoir crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "reservoir-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the reservoir lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-species'."} "reservoir-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the reservoir lattice from its fully symmetry-reduced description, given as fractions of the reservoir crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-multiplicity-and-letter' and 'reservoir-wyckoff-species'."} "reservoir-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the reservoir crystal from its fully symmetry-reduced description. By convention, we take the reservoir to be monoatomic and to be of the same species as the atom removed to introduce the monovacancy."} "reservoir-temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the reservoir crystal."} "reservoir-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the reservoir crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."}} "tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt" "property-title" "Migration energy of neutral monovacancy at zero temperature and given stress state" "property-description" "The energy barrier that must be overcome to transition (at zero temperature and a given stress state) from the initial configuration, a relaxed infinite host crystal lattice with a neutral monovacancy (associated with a missing atom of type 'host-missing-atom-start'), to the final relaxed configuration, where the monovacancy has moved to one of the nearest neighbor lattice sites (which is originally occupied by an atom of type 'host-missing-atom-end')." "vacancy-migration-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The energy barrier that must be overcome to transition (at zero temperature and a given stress state) from the initial configuration, a relaxed infinite host crystal lattice with a neutral monovacancy (associated with a missing atom of type 'host-missing-atom-start'), to the final relaxed configuration, where the monovacancy has moved to one of the nearest neighbor lattice sites (which is originally occupied by an atom of type 'host-missing-atom-end')."} "host-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."} "host-missing-atom-start" {"type" "int" "has-unit" false "extent" [] "required" true "description" "The index of the Wyckoff site corresponding to the initially missing atom. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal."} "host-missing-atom-end" {"type" "int" "has-unit" false "extent" [] "required" true "description" "The index of the Wyckoff site corresponding to the missing atom after vacany migration. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal."} "host-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the host crystal type (e.g. fcc, bcc, diamond)."} "host-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "host-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'."} "host-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'."} "host-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'."}} "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt" "property-title" "Volume change from relaxation of neighboring atoms around a neutral vacant atom site in a crystal at zero temperature and a given stress state" "property-description" "Volume change from relaxation of neighboring atoms around a neutral vacant atom site at a given stress state in a (possibly multispecies) infinite host crystal lattice at zero temperature." "relaxation-volume" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The change in volume associated with the contraction around a vacant atom site in an infinitely large crystal due to the relaxation of neighboring atoms."} "host-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."} "host-removed-atom" {"type" "int" "has-unit" false "extent" [] "required" true "description" "The index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal."} "host-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the host crystal type (e.g. fcc, bcc, diamond)."} "host-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "host-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'."} "host-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'."} "host-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'."}} "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt" "property-title" "Relaxed formation potential energy of a neutral monovacancy in a crystal at zero temperature and a given stress state" "property-description" "Relaxed potential energy of formation of a neutral monovacancy in a (possibly multispecies) infinite host crystal lattice at zero temperature relative to a given infinite monoatomic reference lattice ('reservoir') at zero temperature." "relaxed-formation-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of formation associated with extracting the 'host-removed-atom' from the unrelaxed, infinite host crystal at zero temperature, statically relaxing the host crystal, and adding this atom to the reservoir crystal at zero temperature."} "reservoir-cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" false "description" "The cohesive potential energy (negative of the potential energy per atom) of the reservoir crystal."} "host-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."} "host-removed-atom" {"type" "int" "has-unit" false "extent" [] "required" true "description" "The index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal."} "host-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the host crystal type (e.g. fcc, bcc, diamond)."} "host-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "host-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'."} "host-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'."} "host-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'."} "reservoir-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the reservoir crystal type (e.g. fcc, bcc, diamond)."} "reservoir-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the reservoir crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the reservoir crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "reservoir-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the reservoir lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-species'."} "reservoir-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the reservoir lattice from its fully symmetry-reduced description, given as fractions of the reservoir crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-multiplicity-and-letter' and 'reservoir-wyckoff-species'."} "reservoir-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the reservoir crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-multiplicity-and-letter'. By convention, we take the reservoir to be monoatomic and to be of the same species as the atom removed to introduce the monovacancy."} "reservoir-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the reservoir crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."}} "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt" "property-title" "Unrelaxed formation potential energy of a neutral monovacancy in a crystal at zero temperature and a given stress state" "property-description" "Unrelaxed potential energy of formation of a neutral monovacancy in a (possibly multispecies) infinite host crystal lattice at zero temperature relative to a given infinite monoatomic reference lattice ('reservoir') at zero temperature." "unrelaxed-formation-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The potential energy of formation associated with extracting the 'host-removed-atom' from the unrelaxed, infinite host crystal at zero temperature, and adding it to the reservoir crystal at zero temperature."} "reservoir-cohesive-potential-energy" {"type" "float" "has-unit" true "extent" [] "required" false "description" "The cohesive potential energy (negative of the potential energy per atom) of the reservoir crystal."} "host-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."} "host-removed-atom" {"type" "int" "has-unit" false "extent" [] "required" true "description" "The index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal."} "host-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the host crystal type (e.g. fcc, bcc, diamond)."} "host-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "host-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "host-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "host-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'."} "host-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'."} "host-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'."} "reservoir-short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name describing the reservoir crystal type (e.g. fcc, bcc, diamond)."} "reservoir-a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the reservoir crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system."} "reservoir-alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees."} "reservoir-space-group" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the reservoir crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "reservoir-wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Multiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the reservoir lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-species'."} "reservoir-wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Coordinates of the unique Wyckoff sites needed to generate the reservoir lattice from its fully symmetry-reduced description, given as fractions of the reservoir crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-multiplicity-and-letter' and 'reservoir-wyckoff-species'."} "reservoir-wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the atomic species of the unique Wyckoff sites used to generate the reservoir crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-multiplicity-and-letter'. By convention, we take the reservoir to be monoatomic and to be of the same species as the atom removed to introduce the monovacancy."} "reservoir-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the reservoir crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."}} "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt" "property-title" "Phonon dispersion density of states for a cubic crystal" "property-description" "Density of states of the phonon dispersion energies of a cubic crystal at given temperature and pressure." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "energy" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "Energy of the wave, the dependent variable. Must be same length as density-of-states."} "density-of-states" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "Density of states at a particular energy, the number of phonon modes at a particular wavelength. Same length as 'energy'."}} "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt" "property-title" "Single wave direction phonon dispersion relation for a cubic crystal" "property-description" "Phonon dispersion relation for a cubic crystal at a given temperature and pressure. The dispersion relation is provided for a single wave direction. It consists of multiple branches (three for a monoatomic crystal, more for crystals with more than one basis atom per unit cell)." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "wave-vector-direction" {"type" "float" "has-unit" true "extent" [3 ":"] "required" true "description" "Components of the incident wave wavevector with respect to the reciprocal lattice basis vectors."} "branch-label" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Label naming each branch, e.g. indicating whether it is longitudinal acoustic (LA), transverse acoustic (TA), longitudinal optical (LO), transverse optical (TO)."} "wave-number" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "The wave numbers of each of the k-points."} "response-frequency" {"type" "float" "has-unit" true "extent" [":" ":"] "required" true "description" "For each branch (first index of the array), the response frequencies (second index of array) corresponding to the wave numbers in the wave-number array."}} "tag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal" "property-title" "Shear strain and stability versus first Piola-Kirchhoff shear stress path of a cubic crystal" "property-description" "Shear strain and stability versus first Piola-Kirchhoff (nominal) shear stress path under stress control boundary conditions for a cubic crystal at zero absolute temperature. The applied nominal shear stress is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Equilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "shear-direction" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear stress direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system."} "shear-plane-normal" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The shear stress plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system."} "nominal-shear-stress" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "A vector of nominal shear stress, tau, values, defined such that the first Piola-Kirchhoff stress tensor is P = tau * (s \\otimes n + n \\otimes s), where s is the unit vector associated with 'shear-stress-direction' and n is the unit vector associated with 'shear-plane-normal'."} "nominal-shear-strain" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "A vector of nominal shear strain, gamma, values work conjugate to the nominal shear stress, and defined as gamma = tr(P^T(F-I))/tau, where P^T is the transpose of the first Piola-Kirchhoff stress, tr() is the trace, and I is the 3D identity tensor."} "cauchy-born-stability" {"type" "bool" "has-unit" false "extent" [":"] "required" true "description" "A vector of boolean values indicating the Cauchy-Born stability, with respect to the conventional unit cell, of the stressed crystal. Rigid rotation is not considered an instability in this definition."}} "tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt" "property-title" "Relaxed stacking energy per unit area curve for layer-by-layer rigid slip on {111}<112> in a monoatomic fcc crystal at zero temperature and a specified pressure" "property-description" "The energy-per-area versus slip curve associated with a deformation twinning process in which a sequence of faults is generated by sequentially rigidly displacing one part of a monoatomic fcc crystal relative to another on a {111} plane along a <112> direction at zero temperature and a specified pressure. The following sequence of structures is traversed by the curve: ideal crystal -> intrinsic stacking fault -> two-layer twin nucleus. Each energy is computed after performing relaxation of the atomic coordinates in the direction perpendicular to the fault plane." "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Zero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the fcc crystal material. This should contain only a single entry."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "fault-plane-shift-fraction" {"type" "float" "has-unit" false "extent" [":"] "required" true "description" "A list of relative displacements of the two crystal parts used to compute the stacking energy curve. Each element corresponds to the relative displacement of the two crystal parts as a fraction of the 1/6<112> partial dislocation Burgers vector. The range 0.0 to 1.0 corresponds to the path from the ideal crystal to the intrinstic stacking, and 1.0 to 2.0 corresponds to slipping one layer above from the intrinsic stacking fault to a two-layer twin nucleus."} "fault-plane-energy" {"type" "float" "has-unit" true "extent" [":"] "required" true "description" "The relaxed excess energy-per-area of the fault plane for a given relative displacement of the two crystal parts. The order of the energies must match the ordering in 'fault-plane-shift-fraction'."}} "tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt" "property-title" "Equilibrium two-dimensional layer hexagonal crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameter and basis atoms of a two-dimensional hexagonal crystalline layer at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the 2-d hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Thermal average length of unit cell vectors and (which are equal for this crystal structure). The two associated directions correspond to the first and second components of the entries of 'basis-atom-coordinates'. The lattice does not repeat in a third direction, but the basis vector used to define out-of-plane atomic coordinates is taken to be orthogonal to and and equal in length to them. The triad (,,) forms a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by and , the third basis vector, , is taken to be orthogonal to and and equal in length to them, such that the triad (,,) forms a right-handed system. If the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. The first two components of each basis atom must be between zero and one, inclusive of zero. The third component can be any real number, since it is normalized relative to an unrelated in-plane length, and may be positive or negative in order to accomodate the standard Wyckoff positions for layer groups."} "layer-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the layer group associated with the symmetry of the crystal (e.g. p6/mmm for graphene)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 2b is the only entry for graphene). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors and the third basis vector , defined to be perpendicular to the two lattice vectors and equal in length to , such that the triad (,,) forms a right-handed system. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the 2-d crystal."} "cauchy-in-plane-stress" {"type" "float" "has-unit" true "extent" [3] "required" true "description" "The [xx,yy,xy] (i.e. [11,22,12]) components of the Cauchy in-plane stress (force-per-unit-length) acting on the periodic cell. The orthonormal basis (, ) used to express the stress should be such that e_1 is in the direction of , and e_2 is in the direction of the vector product of and ( x ). The form must be [d d 0] to maintain the symmetry."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt" "property-title" "Equilibrium cubic crystal structure at a given temperature and hydrostatic stress" "property-description" "Conventional lattice parameter and basis atom positions of a cubic crystal at a given temperature and hydrostatic pressure." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt" "property-title" "Equilibrium hexagonal crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameters of a hexagonal crystal at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the hexagonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vectors and . The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_3 is in the direction of , and e_2 is in the direction of ( x ). The expected form should be [d d e 0 0 r]."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-monoclinic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-monoclinic-crystal-npt" "property-title" "Equilibrium monoclinic crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameters and basis atom positions of a monoclinic crystal at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the monoclinic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the first component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the second component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between unit cell vectors and (which correspond to the first and second components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of , and e_3 is given by ( x ). The expected form should be [d e f 0 r 0]."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-orthorhombic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-orthorhombic-crystal-npt" "property-title" "Equilibrium orthorhombic crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameters and basis atom positions of a orthorhombic crystal at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the orthorhombic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the first component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the second component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of , and e_3 is in the direction of . The expected form should be [d e f 0 0 0]."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-rhombohedral-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-rhombohedral-crystal-npt" "property-title" "Equilibrium rhombohedral crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameters of a rhombohedral crystal at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the rhombohedral crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the rhombohedral crystal."} "alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The interior acute angles of the unit cell. This corresponds to the angle between any pair of the lattice vectors , , and . Must be strictly greater than zero and strictly less than 90 degrees."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that the vector ++ is in the direction of ++. The expected form should be [d d d r r r]."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-tetragonal-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-tetragonal-crystal-npt" "property-title" "Equilibrium tetragonal crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameters and basis atom positions of a tetragonal crystal at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the tetragonal crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The length of the average unit cell vectors and . The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (, . ) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of the unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (, . ) must form a right-handed system."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of , and e_3 is in the direction of . The expected form should be [d d e 0 0 0]."}} "tag:staff@noreply.openkim.org,2014-04-15:property/structure-triclinic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-triclinic-crystal-npt" "property-title" "Equilibrium triclinic crystal structure at a given temperature and stress state" "property-description" "Conventional lattice parameters and basis atom positions of a triclinic crystal at a given temperature and stress state." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the triclinic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the first component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "b" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the second component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system."} "alpha" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between unit cell vectors and (which correspond to the second and third components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees."} "beta" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between unit cell vectors and (which correspond to the first and third components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees."} "gamma" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The angle between unit cell vectors and (which correspond to the first and second components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]."}} "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt" "property-title" "Surface energy broken bond fit model" "property-description" "Surface energy fit obtained by calculating the number of broken bonds created by cleaving a crystal at a given hydrostatic stress and temperature. These are the prefactors associated with each term in the model." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "fit-c" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Constant offset term."} "fit-p1" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Fit parameter 1, the prefactor for the first term."} "fit-p2" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Fit parameter 2, the prefactor for the second term."} "fit-p3" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Fit parameter 3, the prefactor for the third term."} "fit-error-max" {"type" "float" "has-unit" false "extent" [] "required" true "description" "Maximum relative error of the fit given calculated values, given by max{ abs( (E_{fit} - E_{measured)/E_measured ) }."} "fit-error-range" {"type" "float" "has-unit" false "extent" [] "required" true "description" "Total average relative range of the error for the fit, \\sum{ |E_error / (E_max - E_min)| }/N, error given by E_{fit} - E_{measured}"}} "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt" "property-title" "Surface energy for a cubic crystal" "property-description" "A surface (free) energy of a cubic monoatomic crystal at a specified hydrostatic stress and temperature. If computed, this corresponds to the 'relaxed' surface energy found by performing an energy minimization. At zero temperature, the calculation is for the potential energy as opposed to the free energy." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "miller-indices" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The vector of Miller indices defining the crystal surface."} "termination" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Details of the surface termination for crystals containing more than one basis atom."} "step-structure-notation" {"type" "string" "has-unit" false "extent" [] "required" false "description" "The surface step structure notation, e.g. w(h,k,l) x (hs,ks,ls) where (h,k,l) and (hs,ks,ls) are the Miller index of the the terrace and step planes, respectively. w is the atomic width of the terrace. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L"} "wood-notation" {"type" "string" "has-unit" false "extent" [] "required" false "description" "The surface structure defined in Wood notation, e.g. (\\sqrt(2) x \\sqrt(2))R45 or in general (a x b)R\\theta. This means that the adsorbates locations with respect to the substrate are given by R(\\theta)[a b] where R is a rotation matrix. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L"} "surface-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The surface (free) energy density (energy per unit area). When obtained in a calculation, this is the (free) energy per area in the relaxed structure obtained by performing an energy minimization."} "reconstruction-description" {"type" "string" "has-unit" false "extent" [] "required" false "description" "A description of the observed reconstruction if one took place."} "relaxed-surface-positions" {"type" "float" "has-unit" true "extent" [":" 3] "required" false "description" "The [x,y,z] coordinates of each particle after relaxation."}} "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal" {"property-id" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal" "property-title" "Ideal surface energy for a cubic crystal" "property-description" "The surface energy of a cubic crystal for a surface obtained from the ideal crystal structure by cleaving along a specified plane, possibly with specified step structure or adsorbates." "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Short name defining the cubic crystal type."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Average equilibrium conventional lattice constant of the cubic crystal."} "basis-atom-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" true "description" "Fractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero."} "space-group" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Hermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc)."} "wyckoff-species" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "The element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'."} "wyckoff-multiplicity-and-letter" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Multiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'."} "wyckoff-coordinates" {"type" "float" "has-unit" false "extent" [":" 3] "required" false "description" "Coordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" false "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "miller-indices" {"type" "int" "has-unit" false "extent" [3] "required" true "description" "The vector of Miller indices defining the crystal surface."} "termination" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Details of the surface termination for crystals containing more than one basis atom."} "ideal-surface-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Unrelaxed surface energy density (energy per unit area), i.e. the energy per area of the structure obtained by cleaving the ideal crystal on the specified plane."} "step-structure-notation" {"type" "string" "has-unit" false "extent" [] "required" false "description" "The surface step structure notation, e.g. w(h,k,l) x (hs,ks,ls) where (h,k,l) and (hs,ks,ls) are the Miller index of the the terrace and step planes, respectively. w is the atomic width of the terrace. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L"} "wood-notation" {"type" "string" "has-unit" false "extent" [] "required" false "description" "The surface structure defined in Wood notation, e.g. (\\sqrt(2) x \\sqrt(2))R45 or in general (a x b)R\\theta. This means that the adsorbates locations with respect to the substrate are given by R(\\theta)[a b] where R is a rotation matrix. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L"}} "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt" "property-title" "Relaxed unstable stacking energy for a monoatomic fcc crystal at zero temperature and a given pressure" "property-description" "The relaxed unstable stacking energy (USE) for a monoatomic fcc crystal at zero temperature and a specified pressure. The USE corresponds to the energy barrier for rigidly slipping one-half of an infinite crystal relative to the other along a <112> direction (fcc partial dislocation direction). Relaxation of the atomic positions is performed perpendicular to the fault plane." "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Zero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the fcc crystal material. This should contain only a single entry."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "unstable-slip-fraction" {"type" "float" "has-unit" false "extent" [] "required" false "description" "The relative displacement in the 1/6<112> direction between the two crystal parts where the energy is maximum. The slip is normalized by the partial dislocation Burgers vector a0/sqrt(6). Therefore 'unstable-slip-fraction' must be between 0.0 and 1.0."} "unstable-stacking-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Relaxed unstable stacking energy in units of energy per area."}} "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt" {"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt" "property-title" "Relaxed unstable twinning energy for a monoatomic fcc crystal at zero temperature and a given pressure" "property-description" "The relaxed unstable twinning energy (UTE) for a monoatomic fcc crystal at a zero temperature and a specified pressure. The UTE corresponds to the energy barrier for rigidly slipping one part of an infinite crystal on a {111} plane adjacent to a preexisting intrinsic stacking fault relative to the other part along a <112> direction (fcc partial dislocation direction). Relaxation of the atomic coordinates is performed perpendicular to the fault plane." "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Zero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure."} "species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "The element symbol of the fcc crystal material. This should contain only a single entry."} "cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress."} "unstable-slip-fraction" {"type" "float" "has-unit" false "extent" [] "required" false "description" "The relative displacement in the 1/6<112> direction between the two crystal parts where the energy is maximum. The slip is normalized by the partial dislocation Burgers vector a0/sqrt(6). The slip is measured from an ideal fault-free structure. At a value of 1.0, an intrinsic stacking fault is formed. Therefore 'unstable-slip-fraction' must be between 1.0 and 2.0."} "unstable-twinning-energy" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Relaxed unstable twinning energy in units of energy per area."}} "tag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check" {"property-id" "tag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check" "property-title" "Universal verification check property" "property-description" "Verification checks are designed to explore basic model characteristics and conformance to the KIM API standard. Results from verification checks are reported in the standardized form defined in this property definition." "vc-name" {"type" "string" "has-unit" false "extent" [] "required" true "description" "A short name describing the verification check."} "vc-description" {"type" "string" "has-unit" false "extent" [] "required" true "description" "A short explanation of the intent of the verification check and what it does."} "vc-category" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The verification check category. There are three possibilities: `informational', `consistency', and `mandatory'. Informational verification checks provide useful information about the model that have no implications regarding its internal consistency. Consistency verification checks test for violations of internal consistency (e.g. the forces are not the negative gradient of the energy). Mandatory verification checks test for failures of a model to satisfy critical KIM API requirements or declared capabilities (such as supporting a specified species)."} "vc-grade-basis" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Each verification check returns a grade indicating how well the test was passed. The type of grade returned is defined by the vc-grade-basis. There are two options: `graded' and `passfail'. A `graded' verification check returns a letter grade `A', `B', `C', `D' or `F' (where `A' is best, and `F' indicated failure). A `passfail' verification check returns `P' for pass, or `F' for fail. In situations where the verification check could not be performed, a value of `N/A' (for not available) must be returned."} "vc-grade" {"type" "string" "has-unit" false "extent" [] "required" true "description" "The verification check grade as defined by vc-grade-basis."} "vc-files" {"type" "file" "has-unit" false "extent" [":"] "required" false "description" "A list of one or more files generated by the VC. For example, these can be data files of results or graphic figures."} "vc-comment" {"type" "string" "has-unit" false "extent" [] "required" false "description" "Text generated by the verification check to accompany the grade and explain its meaning. Additional information to explain or qualify the result can be included."}} "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt" {"property-id" "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt" "property-title" "Equilibrium crystal structure at a given temperature and stress state" "property-description" "Equilibrium structure of a crystal at a given temperature and applied stress. The equilibrium structure is expressed as an AFLOW prototype label and its corresponding free parameters representing the average positions of the constituent atoms. Multiple instances of this property with different free parameters may be reported for a given AFLOW prototype label, representing different local stable or unstable equilibria. There is no guarantee that any instance of this property represents the state of minimum Helmholtz free energy of this system, not even when the configuration space is restricted to the specified crystal prototype label." "prototype-label" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Prototype label (not including an enumeration suffix) as defined by the AFLOW standard (e.g. 'A_tI4_141_a') for the structure. It is expected that the alphabetically lowest of all equivalent labels is chosen."} "stoichiometric-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Element symbols corresponding to the atom types in the stoichiometric formula which appears at the start of the prototype label (e.g. ['Mo','S'] for the AB2 stoichiometric formula, means that the 'A' atom is 'Mo' and the 'B' atom is 'S' for the MoS_2 structure)."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The average equilibrium 'a' lattice constant of the crystal structure as defined by the AFLOW standard. Relative values of other lattice parameters (if present) are given in the 'parameter-values' key."} "parameter-names" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Names of the parameters other than 'a', if present, corresponding to this AFLOW prototype. These can include lattice parameters from the set {'b/a','c/a','alpha','beta','gamma'} (for the conventional crystal structure defined by lattice parameters a, b, and c and angles alpha, beta, gamma), and coordinates of Wyckoff positions that have a degree of variability labeled as 'x*', 'y*' and 'z*' where the asterisk represents an integer as defined by the AFLOW standard."} "parameter-values" {"type" "float" "has-unit" false "extent" [":"] "required" false "description" "Equilibrium values for the parameters listed in 'parameter-names' corresponding to the average positions of the atoms. Note that all parameters are dimensionless."} "library-prototype-label" {"type" "string" "has-unit" false "extent" [] "required" false "description" "The AFLOW library prototype, if any, matching the equilibrium structure. Prototypes in the AFLOW library are associated with common short names used by the materials community. The library prototype includes an integer enumeration suffix defined by the AFLOW standard when there are multiple parameter values associated with the structure (e.g. 'A_tI4_141_a-001' for 'betaSn'). Because these prototype labels are named according to their original material's conventional chemical formula, they may differ from the 'prototype-label' key, which is expected to be standardized to have the alphabetically lowest possible of all equivalent labels."} "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Commonly used name associated with the 'library-prototype-label' key according to the AFLOW prototype library (e.g. 'Face-Centered Cubic' or 'Molybdenite')."} "temperature" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Temperature of the crystal."} "cell-cauchy-stress" {"type" "float" "has-unit" true "extent" [6] "required" true "description" "The [xx,yy,zz,yz,xz,xy] components of the prescribed symmetric Cauchy stress tensor. The numerical value of the stress tensor of a test result or reference data may be different due to tolerance, and can be checked by inspecting the output files of the test or the reference data description. The components should be expressed in the same coordinate system as the structure specified by prototype-label and parameter-values, with the orientation of lattice vectors defined in M. J. Mehl et al., Comput. Mater. Sci. 136, S1 (2017)."} "coordinates-file" {"type" "file" "has-unit" false "extent" [] "required" false "description" "A file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle, and periodicity data."}} "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal" {"property-id" "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal" "property-title" "Equilibrium crystal structure and binding potential energy at zero temperature and applied stress" "property-description" "Equilibrium structure and energy of a crystal at zero temperature and applied stress. The equilibrium structure is expressed as an AFLOW prototype label and its corresponding free parameters. The equilibrium may be stable or unstable (not reported in this property). Multiple instances of this property with different free parameters may be reported for a given AFLOW prototype label, representing different stable or unstable equilibria. There is no guarantee that any instance of this property is the ground state of this system, not even when the configuration space is restricted to the specified crystal prototype label.\n\n\n The reported binding potential energy is the energy required to decompose the solid into its individual constituent particles isolated from each other. This is defined as the energy of the crystal less the energies of the isolated constituent particles. \n\n\n Two values are reported, the `binding-potential-energy-per-atom` is the average energy per atom in the unit cell, the `binding-potential-energy-per-formula` is the energy per chemical formula, which reflects the relative ratio of elements in the primitive unit cell of the crystal. For a crystal containing a single chemical element (regardless of structure) this is the same as the `binding-potential-energy-per-atom`, e.g. for hcp Mg the chemical formula is Mg and the 'binding-potential-energy-per-formula' is per magnesium atom (even though the hcp primitive unit cell contains two atoms). For compounds the 'binding-potential-energy-per-formula' will depend on the stoichiometric formula, e.g. for MoS_2 (AB2-type compound) the energy is per MoS_2 unit (i.e. 3 times larger than the `binding-potential-energy-per-atom` value). The reported energies are actual energies (not the negative of the energy as commonly reported), therefore these values will be negative for a crystal that is more stable than its isolated constituents." "prototype-label" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Prototype label (not including an enumeration suffix) as defined by the AFLOW standard (e.g. 'A_tI4_141_a') for the structure. It is expected that the alphabetically lowest of all equivalent labels is chosen."} "stoichiometric-species" {"type" "string" "has-unit" false "extent" [":"] "required" true "description" "Element symbols corresponding to the atom types in the stoichiometric formula which appears at the start of the prototype label (e.g. ['Mo','S'] for the AB2 stoichiometric formula, means that the 'A' atom is 'Mo' and the 'B' atom is 'S' for the MoS_2 structure)."} "a" {"type" "float" "has-unit" true "extent" [] "required" true "description" "The equilibrium 'a' lattice constant of the crystal structure as defined by the AFLOW standard. Relative values of other lattice parameters (if present) are given in the 'parameter-values' key."} "parameter-names" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Names of the parameters other than 'a', if present, corresponding to this AFLOW prototype. These can include lattice parameters from the set {'b/a','c/a','alpha','beta','gamma'} (for the conventional crystal structure defined by lattice parameters a, b, and c and angles alpha, beta, gamma), and coordinates of Wyckoff positions that have a degree of variability labeled as 'x*', 'y*' and 'z*' where the asterisk represents an integer as defined by the AFLOW standard."} "parameter-values" {"type" "float" "has-unit" false "extent" [":"] "required" false "description" "Equilibrium values for the parameters listed in 'parameter-names'. Note that all parameters are dimensionless."} "library-prototype-label" {"type" "string" "has-unit" false "extent" [] "required" false "description" "The AFLOW library prototype, if any, matching the equilibrium structure. Prototypes in the AFLOW library are associated with common short names used by the materials community. The library prototype includes an integer enumeration suffix defined by the AFLOW standard when there are multiple parameter values associated with the structure (e.g. 'A_tI4_141_a-001' for 'betaSn'). Because these prototype labels are named according to their original material's conventional chemical formula, they may differ from the 'prototype-label' key, which is expected to be standardized to have the alphabetically lowest possible of all equivalent labels."} "short-name" {"type" "string" "has-unit" false "extent" [":"] "required" false "description" "Commonly used name associated with the 'library-prototype-label' key according to the AFLOW prototype library (e.g. 'Face-Centered Cubic' or 'Molybdenite')."} "binding-potential-energy-per-atom" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Binding potential energy per atom of the crystal defined as follows: \\Delta \\bar{V}_{atom} = ( V(A_{N_A}B_{N_B}...) - [N_A V_{isolated}(A) + N_B V_{isolated}(B) + ...] )/(N_A + N_B ...), where \\Delta \\bar{V}_{atom} is the binding energy per atom, V(A_{N_A}B_{N_B}...) is the energy of (any) unit cell, V_{isolated}(X) is the energy of an isolated particle of species X, and N_X is the number of atoms of species X in the (same) unit cell."} "binding-potential-energy-per-formula" {"type" "float" "has-unit" true "extent" [] "required" true "description" "This variable has the same definition as 'binding-potential-energy-per-atom' except that the energy is normalized per chemical formula instead of per atom, i.e. \\Delta \\bar{V}_{formula} = \\Delta \\bar{V}_{atom} N_{formula}, where N_{formula} is the number of atoms in the reduced stoichiometric formula, i.e. the sum of indices in the first section of the prototype-label."} "coordinates-file" {"type" "file" "has-unit" false "extent" [] "required" false "description" "A file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle, and periodicity data."}}} {"atomic-mass" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "bulk-modulus-isothermal-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt" "bulk-modulus-isothermal-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt" "cohesive-energy-lattice-invariant-shear-path-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal" "cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" "cohesive-energy-relation-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "cohesive-energy-shear-stress-path-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal" "cohesive-free-energy-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal" "cohesive-free-energy-hexagonal-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal" "cohesive-potential-energy-2d-hexagonal-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal" "cohesive-potential-energy-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal" "cohesive-potential-energy-hexagonal-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal" "configuration-cluster-fixed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed" "configuration-cluster-relaxed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed" "configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed" "configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed" "configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed" "configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed" "configuration-periodic-2d-cell-fixed-particles-fixed" "tag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed" "dislocation-core-energy-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt" "elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt" "elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt" "elastic-constants-isothermal-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt" "enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt" "enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt" "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt" "extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "gamma-surface-relaxed-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt" "grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal" "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal" "grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal" "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal" "grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal" "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal" "intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "linear-thermal-expansion-coefficient-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt" "melting-temperature-constant-pressure-cubic-crystal" "tag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal" "monovacancy-formation-energy-monoatomic-cubic-diamond" "tag:staff@noreply.openkim.org,2014-04-15:property/monovacancy-formation-energy-monoatomic-cubic-diamond" "monovacancy-neutral-formation-free-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt" "monovacancy-neutral-migration-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt" "monovacancy-neutral-relaxation-volume-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt" "monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt" "monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt" "phonon-dispersion-dos-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt" "phonon-dispersion-relation-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt" "shear-stress-path-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal" "stacking-fault-relaxed-energy-curve-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt" "structure-2d-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt" "structure-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt" "structure-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt" "structure-monoclinic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-monoclinic-crystal-npt" "structure-orthorhombic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-orthorhombic-crystal-npt" "structure-rhombohedral-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-rhombohedral-crystal-npt" "structure-tetragonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-tetragonal-crystal-npt" "structure-triclinic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-triclinic-crystal-npt" "surface-energy-broken-bond-fit-cubic-bravais-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt" "surface-energy-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt" "surface-energy-ideal-cubic-crystal" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal" "unstable-stacking-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt" "unstable-twinning-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt" "verification-check" "tag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check" "crystal-structure-npt" "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt" "binding-energy-crystal" "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal"} {"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "atomic-mass" "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt" "bulk-modulus-isothermal-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt" "bulk-modulus-isothermal-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal" "cohesive-energy-lattice-invariant-shear-path-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" "cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "cohesive-energy-relation-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal" "cohesive-energy-shear-stress-path-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal" "cohesive-free-energy-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal" "cohesive-free-energy-hexagonal-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal" "cohesive-potential-energy-2d-hexagonal-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal" "cohesive-potential-energy-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal" "cohesive-potential-energy-hexagonal-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed" "configuration-cluster-fixed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed" "configuration-cluster-relaxed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed" "configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed" "configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed" "configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed" "tag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed" "configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed" "tag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed" "configuration-periodic-2d-cell-fixed-particles-fixed" "tag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt" "dislocation-core-energy-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt" "elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt" "elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt" "elastic-constants-isothermal-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt" "enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt" "enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt" "tag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt" "gamma-surface-relaxed-fcc-crystal-npt" "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal" "grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal" "tag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal" "grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal" "tag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal" "grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt" "linear-thermal-expansion-coefficient-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal" "melting-temperature-constant-pressure-cubic-crystal" "tag:staff@noreply.openkim.org,2014-04-15:property/monovacancy-formation-energy-monoatomic-cubic-diamond" "monovacancy-formation-energy-monoatomic-cubic-diamond" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt" "monovacancy-neutral-formation-free-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt" "monovacancy-neutral-migration-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt" "monovacancy-neutral-relaxation-volume-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt" "monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt" "tag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt" "monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt" "phonon-dispersion-dos-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt" "phonon-dispersion-relation-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal" "shear-stress-path-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt" "stacking-fault-relaxed-energy-curve-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt" "structure-2d-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt" "structure-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt" "structure-hexagonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-monoclinic-crystal-npt" "structure-monoclinic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-orthorhombic-crystal-npt" "structure-orthorhombic-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-rhombohedral-crystal-npt" "structure-rhombohedral-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-tetragonal-crystal-npt" "structure-tetragonal-crystal-npt" "tag:staff@noreply.openkim.org,2014-04-15:property/structure-triclinic-crystal-npt" "structure-triclinic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt" "surface-energy-broken-bond-fit-cubic-bravais-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt" "surface-energy-cubic-crystal-npt" "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal" "surface-energy-ideal-cubic-crystal" "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt" "unstable-stacking-fault-relaxed-energy-fcc-crystal-npt" "tag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt" "unstable-twinning-fault-relaxed-energy-fcc-crystal-npt" "tag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check" "verification-check" "tag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt" "crystal-structure-npt" "tag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal" "binding-energy-crystal"}] diff --git a/kim_property/properties/kim_properties.pickle b/kim_property/properties/kim_properties.pickle deleted file mode 100644 index 193ffb1..0000000 --- a/kim_property/properties/kim_properties.pickle +++ /dev/null @@ -1,12919 +0,0 @@ -(lp0 -(dp1 -Vtag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass -p2 -(dp3 -Vproperty-id -p4 -Vtag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass -p5 -sVproperty-title -p6 -VAtomic mass -p7 -sVproperty-description -p8 -VThe atomic mass of the element -p9 -sVspecies -p10 -(dp11 -Vtype -p12 -Vstring -p13 -sVhas-unit -p14 -I00 -sVextent -p15 -(lp16 -sVrequired -p17 -I01 -sVdescription -p18 -VElement symbol of the species -p19 -ssVmass -p20 -(dp21 -g12 -Vfloat -p22 -sg14 -I01 -sg15 -(lp23 -sg17 -I01 -sg18 -VMass of a single atom of the species -p24 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt -p25 -(dp26 -Vproperty-id -p27 -Vtag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-cubic-crystal-npt -p28 -sVproperty-title -p29 -VIsothermal bulk modulus of a cubic crystal at constant temperature and hydrostatic stress -p30 -sVproperty-description -p31 -VIsothermal bulk modulus of a cubic crystal at constant temperature and hydrostatic stress. -p32 -sVshort-name -p33 -(dp34 -Vtype -p35 -Vstring -p36 -sVhas-unit -p37 -I00 -sVextent -p38 -(lp39 -V: -p40 -asVrequired -p41 -I00 -sVdescription -p42 -VShort name defining the cubic crystal type. -p43 -ssVspecies -p44 -(dp45 -g35 -Vstring -p46 -sg37 -I00 -sg38 -(lp47 -g40 -asg41 -I01 -sg42 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p48 -ssVa -p49 -(dp50 -g35 -Vfloat -p51 -sg37 -I01 -sg38 -(lp52 -sg41 -I01 -sg42 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p53 -ssVbasis-atom-coordinates -p54 -(dp55 -g35 -Vfloat -p56 -sg37 -I00 -sg38 -(lp57 -g40 -aI3 -asg41 -I01 -sg42 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p58 -ssVspace-group -p59 -(dp60 -g35 -Vstring -p61 -sg37 -I00 -sg38 -(lp62 -sg41 -I00 -sg42 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p63 -ssVwyckoff-species -p64 -(dp65 -g35 -Vstring -p66 -sg37 -I00 -sg38 -(lp67 -g40 -asg41 -I00 -sg42 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p68 -ssVwyckoff-multiplicity-and-letter -p69 -(dp70 -g35 -Vstring -p71 -sg37 -I00 -sg38 -(lp72 -g40 -asg41 -I00 -sg42 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p73 -ssVwyckoff-coordinates -p74 -(dp75 -g35 -Vfloat -p76 -sg37 -I00 -sg38 -(lp77 -g40 -aI3 -asg41 -I00 -sg42 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p78 -ssVtemperature -p79 -(dp80 -g35 -Vfloat -p81 -sg37 -I01 -sg38 -(lp82 -sg41 -I01 -sg42 -VTemperature of the crystal. -p83 -ssVisothermal-bulk-modulus -p84 -(dp85 -g35 -Vfloat -p86 -sg37 -I01 -sg38 -(lp87 -sg41 -I01 -sg42 -VIsothermal bulk modulus of the cubic crystal at the specified temperature and stress state. -p88 -ssVcauchy-stress -p89 -(dp90 -g35 -Vfloat -p91 -sg37 -I01 -sg38 -(lp92 -I6 -asg41 -I01 -sg42 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p93 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt -p94 -(dp95 -Vproperty-id -p96 -Vtag:staff@noreply.openkim.org,2014-04-15:property/bulk-modulus-isothermal-hexagonal-crystal-npt -p97 -sVproperty-title -p98 -VIsothermal bulk modulus of a hexagonal crystal structure at constant temperature and stress -p99 -sVproperty-description -p100 -VIsothermal bulk modulus of a hexagonal crystal structure at constant temperature and stress. -p101 -sVshort-name -p102 -(dp103 -Vtype -p104 -Vstring -p105 -sVhas-unit -p106 -I00 -sVextent -p107 -(lp108 -g40 -asVrequired -p109 -I00 -sVdescription -p110 -VShort name defining the hexagonal crystal type. -p111 -ssVspecies -p112 -(dp113 -g104 -Vstring -p114 -sg106 -I00 -sg107 -(lp115 -g40 -asg109 -I01 -sg110 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p116 -ssg49 -(dp117 -g104 -Vfloat -p118 -sg106 -I01 -sg107 -(lp119 -sg109 -I01 -sg110 -VThe average length of unit cell vectors and . The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p120 -ssVc -p121 -(dp122 -g104 -Vfloat -p123 -sg106 -I01 -sg107 -(lp124 -sg109 -I01 -sg110 -VThe average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p125 -ssVbasis-atom-coordinates -p126 -(dp127 -g104 -Vfloat -p128 -sg106 -I00 -sg107 -(lp129 -g40 -aI3 -asg109 -I01 -sg110 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p130 -ssVspace-group -p131 -(dp132 -g104 -Vstring -p133 -sg106 -I00 -sg107 -(lp134 -sg109 -I00 -sg110 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p135 -ssVwyckoff-species -p136 -(dp137 -g104 -Vstring -p138 -sg106 -I00 -sg107 -(lp139 -g40 -asg109 -I00 -sg110 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p140 -ssVwyckoff-multiplicity-and-letter -p141 -(dp142 -g104 -Vstring -p143 -sg106 -I00 -sg107 -(lp144 -g40 -asg109 -I00 -sg110 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p145 -ssVwyckoff-coordinates -p146 -(dp147 -g104 -Vfloat -p148 -sg106 -I00 -sg107 -(lp149 -g40 -aI3 -asg109 -I00 -sg110 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p150 -ssVtemperature -p151 -(dp152 -g104 -Vfloat -p153 -sg106 -I01 -sg107 -(lp154 -sg109 -I01 -sg110 -VTemperature of the crystal. -p155 -ssVisothermal-bulk-modulus -p156 -(dp157 -g104 -Vfloat -p158 -sg106 -I01 -sg107 -(lp159 -sg109 -I01 -sg110 -VIsothermal bulk modulus of the hexagonal crystal at the specified temperature and stress state. -p160 -ssVcauchy-stress -p161 -(dp162 -g104 -Vfloat -p163 -sg106 -I01 -sg107 -(lp164 -I6 -asg109 -I01 -sg110 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_3 is in the direction of , and e_2 is in the direction of ( x ). The expected form should be [d d e 0 0 r]. -p165 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal -p166 -(dp167 -Vproperty-id -p168 -Vtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-path-cubic-crystal -p169 -sVproperty-title -p170 -VCohesive energy for a lattice-invariant shear path deformation of a cubic crystal -p171 -sVproperty-description -p172 -VCohesive energy versus shear relation along a lattice-invariant deformation path of a cubic crystal at zero absolute temperature. The lattice-invariant shear path is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. All primitive unit cell atomic shifts are energy minimized for each value of the shear parameter. -p173 -sVshort-name -p174 -(dp175 -Vtype -p176 -Vstring -p177 -sVhas-unit -p178 -I00 -sVextent -p179 -(lp180 -g40 -asVrequired -p181 -I00 -sVdescription -p182 -VShort name defining the cubic crystal type. -p183 -ssVspecies -p184 -(dp185 -g176 -Vstring -p186 -sg178 -I00 -sg179 -(lp187 -g40 -asg181 -I01 -sg182 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p188 -ssg49 -(dp189 -g176 -Vfloat -p190 -sg178 -I01 -sg179 -(lp191 -sg181 -I01 -sg182 -VEquilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions. -p192 -ssVbasis-atom-coordinates -p193 -(dp194 -g176 -Vfloat -p195 -sg178 -I00 -sg179 -(lp196 -g40 -aI3 -asg181 -I01 -sg182 -VFractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p197 -ssVspace-group -p198 -(dp199 -g176 -Vstring -p200 -sg178 -I00 -sg179 -(lp201 -sg181 -I00 -sg182 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p202 -ssVwyckoff-species -p203 -(dp204 -g176 -Vstring -p205 -sg178 -I00 -sg179 -(lp206 -g40 -asg181 -I00 -sg182 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p207 -ssVwyckoff-multiplicity-and-letter -p208 -(dp209 -g176 -Vstring -p210 -sg178 -I00 -sg179 -(lp211 -g40 -asg181 -I00 -sg182 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p212 -ssVwyckoff-coordinates -p213 -(dp214 -g176 -Vfloat -p215 -sg178 -I00 -sg179 -(lp216 -g40 -aI3 -asg181 -I00 -sg182 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p217 -ssVshear-direction -p218 -(dp219 -g176 -Vint -p220 -sg178 -I00 -sg179 -(lp221 -I3 -asg181 -I01 -sg182 -VThe shear strain direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system. -p222 -ssVshear-plane-normal -p223 -(dp224 -g176 -Vint -p225 -sg178 -I00 -sg179 -(lp226 -I3 -asg181 -I01 -sg182 -VThe shear strain plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system. -p227 -ssVshear-parameter -p228 -(dp229 -g176 -Vfloat -p230 -sg178 -I00 -sg179 -(lp231 -g40 -asg181 -I01 -sg182 -VA vector of shear parameter values in normalized units, such that a shear parameter of zero corresponds to the reference crystal structure, and a shear parameter of one restores the Bravais lattice structure. -p232 -ssVcohesive-potential-energy -p233 -(dp234 -g176 -Vfloat -p235 -sg178 -I01 -sg179 -(lp236 -g40 -asg181 -I01 -sg182 -VA vector of cohesive energy (negative of the potential energy per atom) values for a crystal sheared by the corresponding shear parameter values in the vector shear-parameter. -p237 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal -p238 -(dp239 -Vproperty-id -p240 -Vtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal -p241 -sVproperty-title -p242 -VCohesive energy for an unrelaxed lattice-invariant shear path deformation of a cubic crystal -p243 -sVproperty-description -p244 -VUnrelaxed cohesive energy versus shear relation along a lattice-invariant deformation path of a cubic crystal at zero absolute temperature. The lattice-invariant shear path is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. Unit cell atomic shifts are NOT minimized for each value of the shear parameter. -p245 -sVshort-name -p246 -(dp247 -Vtype -p248 -Vstring -p249 -sVhas-unit -p250 -I00 -sVextent -p251 -(lp252 -g40 -asVrequired -p253 -I00 -sVdescription -p254 -VShort name defining the cubic crystal type. -p255 -ssVspecies -p256 -(dp257 -g248 -Vstring -p258 -sg250 -I00 -sg251 -(lp259 -g40 -asg253 -I01 -sg254 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p260 -ssg49 -(dp261 -g248 -Vfloat -p262 -sg250 -I01 -sg251 -(lp263 -sg253 -I01 -sg254 -VEquilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions. -p264 -ssVbasis-atom-coordinates -p265 -(dp266 -g248 -Vfloat -p267 -sg250 -I00 -sg251 -(lp268 -g40 -aI3 -asg253 -I01 -sg254 -VFractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p269 -ssVspace-group -p270 -(dp271 -g248 -Vstring -p272 -sg250 -I00 -sg251 -(lp273 -sg253 -I00 -sg254 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p274 -ssVwyckoff-species -p275 -(dp276 -g248 -Vstring -p277 -sg250 -I00 -sg251 -(lp278 -g40 -asg253 -I00 -sg254 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p279 -ssVwyckoff-multiplicity-and-letter -p280 -(dp281 -g248 -Vstring -p282 -sg250 -I00 -sg251 -(lp283 -g40 -asg253 -I00 -sg254 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p284 -ssVwyckoff-coordinates -p285 -(dp286 -g248 -Vfloat -p287 -sg250 -I00 -sg251 -(lp288 -g40 -aI3 -asg253 -I00 -sg254 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p289 -ssVshear-direction -p290 -(dp291 -g248 -Vint -p292 -sg250 -I00 -sg251 -(lp293 -I3 -asg253 -I01 -sg254 -VThe shear strain direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system. -p294 -ssVshear-plane-normal -p295 -(dp296 -g248 -Vint -p297 -sg250 -I00 -sg251 -(lp298 -I3 -asg253 -I01 -sg254 -VThe shear strain plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system. -p299 -ssVshear-parameter -p300 -(dp301 -g248 -Vfloat -p302 -sg250 -I00 -sg251 -(lp303 -g40 -asg253 -I01 -sg254 -VA vector of shear parameter values in normalized units, such that a shear parameter of zero corresponds to the reference crystal structure, and a shear parameter of one restores the Bravais lattice structure. -p304 -ssVcohesive-potential-energy-unrelaxed -p305 -(dp306 -g248 -Vfloat -p307 -sg250 -I01 -sg251 -(lp308 -g40 -asg253 -I01 -sg254 -VA vector of the unrelaxed cohesive energy (negative of the potential energy per atom) values for a crystal sheared by the corresponding shear parameter values in the vector shear-parameter. -p309 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal -p310 -(dp311 -Vproperty-id -p312 -Vtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal -p313 -sVproperty-title -p314 -VCohesive energy versus lattice constant relation for a cubic crystal -p315 -sVproperty-description -p316 -VCohesive energy versus lattice constant relation for a cubic crystal at zero absolute temperature. Lattice constants are taken to correspond to the conventional cubic unit cell. Moreover, note that here the cohesive energy is defined as the *negative* of the potential energy per atom. -p317 -sVshort-name -p318 -(dp319 -Vtype -p320 -Vstring -p321 -sVhas-unit -p322 -I00 -sVextent -p323 -(lp324 -g40 -asVrequired -p325 -I00 -sVdescription -p326 -VShort name defining the cubic crystal type. -p327 -ssVspecies -p328 -(dp329 -g320 -Vstring -p330 -sg322 -I00 -sg323 -(lp331 -g40 -asg325 -I01 -sg326 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p332 -ssg49 -(dp333 -g320 -Vfloat -p334 -sg322 -I01 -sg323 -(lp335 -g40 -asg325 -I01 -sg326 -VA vector of conventional unit cell lattice constants of the cubic crystal. -p336 -ssVbasis-atom-coordinates -p337 -(dp338 -g320 -Vfloat -p339 -sg322 -I00 -sg323 -(lp340 -g40 -aI3 -asg325 -I01 -sg326 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p341 -ssVspace-group -p342 -(dp343 -g320 -Vstring -p344 -sg322 -I00 -sg323 -(lp345 -sg325 -I00 -sg326 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p346 -ssVwyckoff-species -p347 -(dp348 -g320 -Vstring -p349 -sg322 -I00 -sg323 -(lp350 -g40 -asg325 -I00 -sg326 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p351 -ssVwyckoff-multiplicity-and-letter -p352 -(dp353 -g320 -Vstring -p354 -sg322 -I00 -sg323 -(lp355 -g40 -asg325 -I00 -sg326 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p356 -ssVwyckoff-coordinates -p357 -(dp358 -g320 -Vfloat -p359 -sg322 -I00 -sg323 -(lp360 -g40 -aI3 -asg325 -I00 -sg326 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p361 -ssVcohesive-potential-energy -p362 -(dp363 -g320 -Vfloat -p364 -sg322 -I01 -sg323 -(lp365 -g40 -asg325 -I01 -sg326 -VCohesive energy (negative of the potential energy per atom) associated with the corresponding lattice constant. -p366 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal -p367 -(dp368 -Vproperty-id -p369 -Vtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-shear-stress-path-cubic-crystal -p370 -sVproperty-title -p371 -VCohesive energy and stability versus first Piola-Kirchhoff shear stress path of a cubic crystal -p372 -sVproperty-description -p373 -VCohesive energy and stability versus first Piola-Kirchhoff (nominal) shear stress path under stress control boundary conditions for a cubic crystal at zero absolute temperature. The applied nominal shear stress is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. -p374 -sVshort-name -p375 -(dp376 -Vtype -p377 -Vstring -p378 -sVhas-unit -p379 -I00 -sVextent -p380 -(lp381 -g40 -asVrequired -p382 -I00 -sVdescription -p383 -VShort name defining the cubic crystal type. -p384 -ssVspecies -p385 -(dp386 -g377 -Vstring -p387 -sg379 -I00 -sg380 -(lp388 -g40 -asg382 -I01 -sg383 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p389 -ssg49 -(dp390 -g377 -Vfloat -p391 -sg379 -I01 -sg380 -(lp392 -sg382 -I01 -sg383 -VEquilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions. -p393 -ssVbasis-atom-coordinates -p394 -(dp395 -g377 -Vfloat -p396 -sg379 -I00 -sg380 -(lp397 -g40 -aI3 -asg382 -I01 -sg383 -VFractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p398 -ssVspace-group -p399 -(dp400 -g377 -Vstring -p401 -sg379 -I00 -sg380 -(lp402 -sg382 -I00 -sg383 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p403 -ssVwyckoff-species -p404 -(dp405 -g377 -Vstring -p406 -sg379 -I00 -sg380 -(lp407 -g40 -asg382 -I00 -sg383 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p408 -ssVwyckoff-multiplicity-and-letter -p409 -(dp410 -g377 -Vstring -p411 -sg379 -I00 -sg380 -(lp412 -g40 -asg382 -I00 -sg383 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p413 -ssVwyckoff-coordinates -p414 -(dp415 -g377 -Vfloat -p416 -sg379 -I00 -sg380 -(lp417 -g40 -aI3 -asg382 -I00 -sg383 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p418 -ssVshear-direction -p419 -(dp420 -g377 -Vint -p421 -sg379 -I00 -sg380 -(lp422 -I3 -asg382 -I01 -sg383 -VThe shear stress direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system. -p423 -ssVshear-plane-normal -p424 -(dp425 -g377 -Vint -p426 -sg379 -I00 -sg380 -(lp427 -I3 -asg382 -I01 -sg383 -VThe shear stress plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system. -p428 -ssVnominal-shear-stress -p429 -(dp430 -g377 -Vfloat -p431 -sg379 -I01 -sg380 -(lp432 -g40 -asg382 -I01 -sg383 -VA vector of nominal shear stress, tau, values, defined such that the first Piola-Kirchhoff stress tensor is P = tau * (s \u005cotimes n + n \u005cotimes s), where s is the unit vector associated with 'shear-stress-direction' and n is the unit vector associated with 'shear-plane-normal'. -p433 -ssVcohesive-potential-energy -p434 -(dp435 -g377 -Vfloat -p436 -sg379 -I01 -sg380 -(lp437 -g40 -asg382 -I01 -sg383 -VA vector of cohesive energy (negative of the potential energy per atom) values for a crystal sheared by the corresponding shear parameter values in the vector 'nominal-shear-stress'. -p438 -ssVcauchy-born-stability -p439 -(dp440 -g377 -Vbool -p441 -sg379 -I00 -sg380 -(lp442 -g40 -asg382 -I01 -sg383 -VA vector of boolean values indicating the Cauchy-Born stability, with respect to the conventional unit cell, of the stressed crystal. Rigid rotation is not considered an instability in this definition. -p443 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal -p444 -(dp445 -Vproperty-id -p446 -Vtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-cubic-crystal -p447 -sVproperty-title -p448 -VCohesive free energy of cubic crystal structure at a given temperature under stress-free boundary conditions -p449 -sVproperty-description -p450 -VCohesive free energy of a cubic crystal at a given temperature under stress-free boundary conditions. -p451 -sVshort-name -p452 -(dp453 -Vtype -p454 -Vstring -p455 -sVhas-unit -p456 -I00 -sVextent -p457 -(lp458 -g40 -asVrequired -p459 -I00 -sVdescription -p460 -VShort name defining the cubic crystal type. -p461 -ssVspecies -p462 -(dp463 -g454 -Vstring -p464 -sg456 -I00 -sg457 -(lp465 -g40 -asg459 -I01 -sg460 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p466 -ssg49 -(dp467 -g454 -Vfloat -p468 -sg456 -I01 -sg457 -(lp469 -sg459 -I01 -sg460 -VAverage equilibrium conventional lattice constant of the cubic crystal at the specified temperature under stress-free boundary conditions. -p470 -ssVbasis-atom-coordinates -p471 -(dp472 -g454 -Vfloat -p473 -sg456 -I00 -sg457 -(lp474 -g40 -aI3 -asg459 -I01 -sg460 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p475 -ssVspace-group -p476 -(dp477 -g454 -Vstring -p478 -sg456 -I00 -sg457 -(lp479 -sg459 -I00 -sg460 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p480 -ssVwyckoff-species -p481 -(dp482 -g454 -Vstring -p483 -sg456 -I00 -sg457 -(lp484 -g40 -asg459 -I00 -sg460 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p485 -ssVwyckoff-multiplicity-and-letter -p486 -(dp487 -g454 -Vstring -p488 -sg456 -I00 -sg457 -(lp489 -g40 -asg459 -I00 -sg460 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p490 -ssVwyckoff-coordinates -p491 -(dp492 -g454 -Vfloat -p493 -sg456 -I00 -sg457 -(lp494 -g40 -aI3 -asg459 -I00 -sg460 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p495 -ssVtemperature -p496 -(dp497 -g454 -Vfloat -p498 -sg456 -I01 -sg457 -(lp499 -sg459 -I01 -sg460 -VTemperature of the crystal. -p500 -ssVcohesive-free-energy -p501 -(dp502 -g454 -Vfloat -p503 -sg456 -I01 -sg457 -(lp504 -sg459 -I01 -sg460 -VCohesive free energy of the cubic crystal at the specified temperature under stress-free boundary conditions. -p505 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal -p506 -(dp507 -Vproperty-id -p508 -Vtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-free-energy-hexagonal-crystal -p509 -sVproperty-title -p510 -VCohesive free energy of hexagonal crystal structure at a given temperature under stress-free boundary conditions -p511 -sVproperty-description -p512 -VCohesive free energy of a hexagonal crystal at a given temperature under stress-free boundary conditions. -p513 -sVshort-name -p514 -(dp515 -Vtype -p516 -Vstring -p517 -sVhas-unit -p518 -I00 -sVextent -p519 -(lp520 -g40 -asVrequired -p521 -I00 -sVdescription -p522 -VShort name defining the hexagonal crystal type. -p523 -ssVspecies -p524 -(dp525 -g516 -Vstring -p526 -sg518 -I00 -sg519 -(lp527 -g40 -asg521 -I01 -sg522 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p528 -ssg49 -(dp529 -g516 -Vfloat -p530 -sg518 -I01 -sg519 -(lp531 -sg521 -I01 -sg522 -VThe average length of unit cell vectors and at the specified temperature under stress-free boundary conditions. The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p532 -ssg121 -(dp533 -g516 -Vfloat -p534 -sg518 -I01 -sg519 -(lp535 -sg521 -I01 -sg522 -VThe average length of unit cell vector at the specified temperature under stress-free boundary conditions. The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p536 -ssVbasis-atom-coordinates -p537 -(dp538 -g516 -Vfloat -p539 -sg518 -I00 -sg519 -(lp540 -g40 -aI3 -asg521 -I01 -sg522 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p541 -ssVspace-group -p542 -(dp543 -g516 -Vstring -p544 -sg518 -I00 -sg519 -(lp545 -sg521 -I00 -sg522 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p546 -ssVwyckoff-species -p547 -(dp548 -g516 -Vstring -p549 -sg518 -I00 -sg519 -(lp550 -g40 -asg521 -I00 -sg522 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p551 -ssVwyckoff-multiplicity-and-letter -p552 -(dp553 -g516 -Vstring -p554 -sg518 -I00 -sg519 -(lp555 -g40 -asg521 -I00 -sg522 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p556 -ssVwyckoff-coordinates -p557 -(dp558 -g516 -Vfloat -p559 -sg518 -I00 -sg519 -(lp560 -g40 -aI3 -asg521 -I00 -sg522 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p561 -ssVtemperature -p562 -(dp563 -g516 -Vfloat -p564 -sg518 -I01 -sg519 -(lp565 -sg521 -I01 -sg522 -VTemperature of the crystal. -p566 -ssVcohesive-free-energy -p567 -(dp568 -g516 -Vfloat -p569 -sg518 -I01 -sg519 -(lp570 -sg521 -I01 -sg522 -VCohesive free energy of the hexagonal crystal at the specified temperature under stress-free boundary conditions. -p571 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal -p572 -(dp573 -Vproperty-id -p574 -Vtag:staff@noreply.openkim.org,2015-05-26:property/cohesive-potential-energy-2d-hexagonal-crystal -p575 -sVproperty-title -p576 -VCohesive energy of two-dimensional layer hexagonal crystal structure at zero temperature under stress-free boundary conditions -p577 -sVproperty-description -p578 -VCohesive energy (negative of the potential energy per atom) of a two-dimensional hexagonal crystalline layer at zero temperature under stress-free boundary conditions. -p579 -sVshort-name -p580 -(dp581 -Vtype -p582 -Vstring -p583 -sVhas-unit -p584 -I00 -sVextent -p585 -(lp586 -g40 -asVrequired -p587 -I00 -sVdescription -p588 -VShort name defining the 2-d hexagonal crystal type. -p589 -ssVspecies -p590 -(dp591 -g582 -Vstring -p592 -sg584 -I00 -sg585 -(lp593 -g40 -asg587 -I01 -sg588 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p594 -ssg49 -(dp595 -g582 -Vfloat -p596 -sg584 -I01 -sg585 -(lp597 -sg587 -I01 -sg588 -VLength of unit cell vectors and (which are equal for this crystal structure) at zero temperature under stress-free boundary conditions. The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The lattice does not repeat in a third direction, but the basis vector used to define out-of-plane atomic coordinates is taken to be orthogonal to and and equal in length to them. The triad (,,) forms a right-handed system. -p598 -ssVbasis-atom-coordinates -p599 -(dp600 -g582 -Vfloat -p601 -sg584 -I00 -sg585 -(lp602 -g40 -aI3 -asg587 -I01 -sg588 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by and , the third basis vector, , is taken to be orthogonal to and and equal in length to them, such that the triad (,,) forms a right-handed system. If the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. The first two components of each basis atom should be between zero and one, inclusive of zero. The third component can be any real number, since it is normalized relative to an unrelated in-plane length, and may be positive or negative in order to accomodate the standard Wyckoff positions for layer groups. -p603 -ssVlayer-group -p604 -(dp605 -g582 -Vstring -p606 -sg584 -I00 -sg585 -(lp607 -sg587 -I00 -sg588 -VHermann-Mauguin designation for the layer group associated with the symmetry of the crystal (e.g. p6/mmm for graphene). -p608 -ssVwyckoff-species -p609 -(dp610 -g582 -Vstring -p611 -sg584 -I00 -sg585 -(lp612 -g40 -asg587 -I00 -sg588 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p613 -ssVwyckoff-multiplicity-and-letter -p614 -(dp615 -g582 -Vstring -p616 -sg584 -I00 -sg585 -(lp617 -g40 -asg587 -I00 -sg588 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 2b is the only entry for graphene). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p618 -ssVwyckoff-coordinates -p619 -(dp620 -g582 -Vfloat -p621 -sg584 -I00 -sg585 -(lp622 -g40 -aI3 -asg587 -I00 -sg588 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors and the third basis vector , defined to be perpendicular to the two lattice vectors and equal in length to , such that the triad (,,) forms a right-handed system. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p623 -ssVcohesive-potential-energy -p624 -(dp625 -g582 -Vfloat -p626 -sg584 -I01 -sg585 -(lp627 -sg587 -I01 -sg588 -VCohesive energy (negative of the potential energy per atom) of the hexagonal 2-d crystal at zero temperature under stress-free boundary conditions. -p628 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal -p629 -(dp630 -Vproperty-id -p631 -Vtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-cubic-crystal -p632 -sVproperty-title -p633 -VCohesive energy of cubic crystal structure at zero temperature under stress-free boundary conditions -p634 -sVproperty-description -p635 -VCohesive energy (negative of the potential energy per atom) of a cubic crystal at zero temperature under stress-free boundary conditions. -p636 -sVshort-name -p637 -(dp638 -Vtype -p639 -Vstring -p640 -sVhas-unit -p641 -I00 -sVextent -p642 -(lp643 -g40 -asVrequired -p644 -I00 -sVdescription -p645 -VShort name defining the cubic crystal type. -p646 -ssVspecies -p647 -(dp648 -g639 -Vstring -p649 -sg641 -I00 -sg642 -(lp650 -g40 -asg644 -I01 -sg645 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p651 -ssg49 -(dp652 -g639 -Vfloat -p653 -sg641 -I01 -sg642 -(lp654 -sg644 -I01 -sg645 -VAverage equilibrium conventional lattice constant of the cubic crystal at zero temperature under stress-free boundary conditions. -p655 -ssVbasis-atom-coordinates -p656 -(dp657 -g639 -Vfloat -p658 -sg641 -I00 -sg642 -(lp659 -g40 -aI3 -asg644 -I01 -sg645 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p660 -ssVspace-group -p661 -(dp662 -g639 -Vstring -p663 -sg641 -I00 -sg642 -(lp664 -sg644 -I00 -sg645 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p665 -ssVwyckoff-species -p666 -(dp667 -g639 -Vstring -p668 -sg641 -I00 -sg642 -(lp669 -g40 -asg644 -I00 -sg645 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p670 -ssVwyckoff-multiplicity-and-letter -p671 -(dp672 -g639 -Vstring -p673 -sg641 -I00 -sg642 -(lp674 -g40 -asg644 -I00 -sg645 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p675 -ssVwyckoff-coordinates -p676 -(dp677 -g639 -Vfloat -p678 -sg641 -I00 -sg642 -(lp679 -g40 -aI3 -asg644 -I00 -sg645 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p680 -ssVcohesive-potential-energy -p681 -(dp682 -g639 -Vfloat -p683 -sg641 -I01 -sg642 -(lp684 -sg644 -I01 -sg645 -VCohesive energy (negative of the potential energy per atom) of the cubic crystal at zero temperature under stress-free boundary conditions. -p685 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal -p686 -(dp687 -Vproperty-id -p688 -Vtag:staff@noreply.openkim.org,2014-04-15:property/cohesive-potential-energy-hexagonal-crystal -p689 -sVproperty-title -p690 -VCohesive energy of hexagonal crystal structure at zero temperature under stress-free boundary conditions -p691 -sVproperty-description -p692 -VCohesive energy (negative of the potential energy per atom) of a hexagonal crystal at zero temperature under stress-free boundary conditions. -p693 -sVshort-name -p694 -(dp695 -Vtype -p696 -Vstring -p697 -sVhas-unit -p698 -I00 -sVextent -p699 -(lp700 -g40 -asVrequired -p701 -I00 -sVdescription -p702 -VShort name defining the hexagonal crystal type. -p703 -ssVspecies -p704 -(dp705 -g696 -Vstring -p706 -sg698 -I00 -sg699 -(lp707 -g40 -asg701 -I01 -sg702 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p708 -ssg49 -(dp709 -g696 -Vfloat -p710 -sg698 -I01 -sg699 -(lp711 -sg701 -I01 -sg702 -VThe average length of unit cell vectors and at zero temperature under stress-free boundary conditions. The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p712 -ssg121 -(dp713 -g696 -Vfloat -p714 -sg698 -I01 -sg699 -(lp715 -sg701 -I01 -sg702 -VThe average length of unit cell vector at zero temperature under stress-free boundary conditions. The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p716 -ssVbasis-atom-coordinates -p717 -(dp718 -g696 -Vfloat -p719 -sg698 -I00 -sg699 -(lp720 -g40 -aI3 -asg701 -I01 -sg702 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p721 -ssVspace-group -p722 -(dp723 -g696 -Vstring -p724 -sg698 -I00 -sg699 -(lp725 -sg701 -I00 -sg702 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p726 -ssVwyckoff-species -p727 -(dp728 -g696 -Vstring -p729 -sg698 -I00 -sg699 -(lp730 -g40 -asg701 -I00 -sg702 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p731 -ssVwyckoff-multiplicity-and-letter -p732 -(dp733 -g696 -Vstring -p734 -sg698 -I00 -sg699 -(lp735 -g40 -asg701 -I00 -sg702 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p736 -ssVwyckoff-coordinates -p737 -(dp738 -g696 -Vfloat -p739 -sg698 -I00 -sg699 -(lp740 -g40 -aI3 -asg701 -I00 -sg702 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p741 -ssVcohesive-potential-energy -p742 -(dp743 -g696 -Vfloat -p744 -sg698 -I01 -sg699 -(lp745 -sg701 -I01 -sg702 -VCohesive energy (negative of the potential energy per atom) of the hexagonal crystal at zero temperature under stress-free boundary conditions. -p746 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed -p747 -(dp748 -Vproperty-id -p749 -Vtag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-fixed -p750 -sVproperty-title -p751 -VStatic calculation of an isolated cluster of particles (unrelaxed) -p752 -sVproperty-description -p753 -VEnergy (and, optionally, forces) of an isolated cluster of particles at zero absolute temperature in a fixed configuration. -p754 -sVspecies -p755 -(dp756 -Vtype -p757 -Vstring -p758 -sVhas-unit -p759 -I00 -sVextent -p760 -(lp761 -g40 -asVrequired -p762 -I01 -sVdescription -p763 -VThe element symbol for each particle. -p764 -ssVunrelaxed-configuration-positions -p765 -(dp766 -g757 -Vfloat -p767 -sg759 -I01 -sg760 -(lp768 -g40 -aI3 -asg762 -I01 -sg763 -VThe [x,y,z] coordinates of each particle. -p769 -ssVunrelaxed-configuration-forces -p770 -(dp771 -g757 -Vfloat -p772 -sg759 -I01 -sg760 -(lp773 -g40 -aI3 -asg762 -I00 -sg763 -VThe [x,y,z] components of the force on each particle. -p774 -ssVunrelaxed-potential-energy -p775 -(dp776 -g757 -Vfloat -p777 -sg759 -I01 -sg760 -(lp778 -sg762 -I01 -sg763 -VThe potential energy of the system. -p779 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed -p780 -(dp781 -Vproperty-id -p782 -Vtag:staff@noreply.openkim.org,2014-04-15:property/configuration-cluster-relaxed -p783 -sVproperty-title -p784 -VStatic minimization of an isolated cluster of particles -p785 -sVproperty-description -p786 -VEnergy (and, optionally, forces) of an isolated cluster of particles at zero absolute temperature in an unrelaxed configuration and a corresponding relaxed configuration. -p787 -sVspecies -p788 -(dp789 -Vtype -p790 -Vstring -p791 -sVhas-unit -p792 -I00 -sVextent -p793 -(lp794 -g40 -asVrequired -p795 -I01 -sVdescription -p796 -VThe element symbol for each particle. -p797 -ssVunrelaxed-configuration-positions -p798 -(dp799 -g790 -Vfloat -p800 -sg792 -I01 -sg793 -(lp801 -g40 -aI3 -asg795 -I01 -sg796 -VThe [x,y,z] coordinates of each particle in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p802 -ssVunrelaxed-configuration-forces -p803 -(dp804 -g790 -Vfloat -p805 -sg792 -I01 -sg793 -(lp806 -g40 -aI3 -asg795 -I00 -sg796 -VThe [x,y,z] components of the force on each particle in the unrelaxed configuration. -p807 -ssVunrelaxed-potential-energy -p808 -(dp809 -g790 -Vfloat -p810 -sg792 -I01 -sg793 -(lp811 -sg795 -I01 -sg796 -VThe potential energy of the unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p812 -ssVrelaxed-configuration-positions -p813 -(dp814 -g790 -Vfloat -p815 -sg792 -I01 -sg793 -(lp816 -g40 -aI3 -asg795 -I01 -sg796 -VThe [x,y,z] coordinates of each particle in the relaxed configuration. -p817 -ssVrelaxed-configuration-forces -p818 -(dp819 -g790 -Vfloat -p820 -sg792 -I01 -sg793 -(lp821 -g40 -aI3 -asg795 -I00 -sg796 -VThe [x,y,z] components of the force on each particle in a relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p822 -ssVrelaxed-potential-energy -p823 -(dp824 -g790 -Vfloat -p825 -sg792 -I01 -sg793 -(lp826 -sg795 -I01 -sg796 -VThe potential energy of a relaxed configuration. -p827 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed -p828 -(dp829 -Vproperty-id -p830 -Vtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed -p831 -sVproperty-title -p832 -VStatic calculation of a non-orthogonal periodic cell of particles (cell fixed, particles fixed) -p833 -sVproperty-description -p834 -VEnergy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles at zero absolute temperature in a fixed configuration. -p835 -sVspecies -p836 -(dp837 -Vtype -p838 -Vstring -p839 -sVhas-unit -p840 -I00 -sVextent -p841 -(lp842 -g40 -asVrequired -p843 -I01 -sVdescription -p844 -VThe element symbol for each particle. -p845 -ssVunrelaxed-periodic-cell-vector-1 -p846 -(dp847 -g838 -Vfloat -p848 -sg840 -I01 -sg841 -(lp849 -I3 -asg843 -I01 -sg844 -VThe [x,y,z] components of periodic cell vector 1. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p850 -ssVunrelaxed-periodic-cell-vector-2 -p851 -(dp852 -g838 -Vfloat -p853 -sg840 -I01 -sg841 -(lp854 -I3 -asg843 -I01 -sg844 -VThe [x,y,z] components of periodic cell vector 2. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p855 -ssVunrelaxed-periodic-cell-vector-3 -p856 -(dp857 -g838 -Vfloat -p858 -sg840 -I01 -sg841 -(lp859 -I3 -asg843 -I01 -sg844 -VThe [x,y,z] components of periodic cell vector 3. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p860 -ssVunrelaxed-cauchy-stress -p861 -(dp862 -g838 -Vfloat -p863 -sg840 -I01 -sg841 -(lp864 -I6 -asg843 -I00 -sg844 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell. -p865 -ssVunrelaxed-configuration-positions -p866 -(dp867 -g838 -Vfloat -p868 -sg840 -I01 -sg841 -(lp869 -g40 -aI3 -asg843 -I01 -sg844 -VThe [x,y,z] coordinates of each particle. -p870 -ssVunrelaxed-configuration-forces -p871 -(dp872 -g838 -Vfloat -p873 -sg840 -I01 -sg841 -(lp874 -g40 -aI3 -asg843 -I00 -sg844 -VThe [x,y,z] components of the force on each particle. -p875 -ssVunrelaxed-potential-energy -p876 -(dp877 -g838 -Vfloat -p878 -sg840 -I01 -sg841 -(lp879 -sg843 -I01 -sg844 -VThe potential energy of the system. -p880 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed -p881 -(dp882 -Vproperty-id -p883 -Vtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed -p884 -sVproperty-title -p885 -VStatic minimization of non-orthogonal periodic cell with fixed cell vectors (cell fixed, particles fixed) -p886 -sVproperty-description -p887 -VEnergy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles at zero absolute temperature in an unrelaxed configuration and a corresponding relaxed configuration. The particle positions are allowed to change in the course of relaxation, but the periodic cell vectors are held fixed. -p888 -sVspecies -p889 -(dp890 -Vtype -p891 -Vstring -p892 -sVhas-unit -p893 -I00 -sVextent -p894 -(lp895 -g40 -asVrequired -p896 -I01 -sVdescription -p897 -VThe element symbol for each particle. -p898 -ssVunrelaxed-periodic-cell-vector-1 -p899 -(dp900 -g891 -Vfloat -p901 -sg893 -I01 -sg894 -(lp902 -I3 -asg896 -I01 -sg897 -VThe [x,y,z] components of periodic cell vector 1 in the unrelaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p903 -ssVunrelaxed-periodic-cell-vector-2 -p904 -(dp905 -g891 -Vfloat -p906 -sg893 -I01 -sg894 -(lp907 -I3 -asg896 -I01 -sg897 -VThe [x,y,z] components of periodic cell vector 2 in the unrelaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p908 -ssVunrelaxed-periodic-cell-vector-3 -p909 -(dp910 -g891 -Vfloat -p911 -sg893 -I01 -sg894 -(lp912 -I3 -asg896 -I01 -sg897 -VThe [x,y,z] components of periodic cell vector 3 in the unrelaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p913 -ssVunrelaxed-cauchy-stress -p914 -(dp915 -g891 -Vfloat -p916 -sg893 -I01 -sg894 -(lp917 -I6 -asg896 -I00 -sg897 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the unrelaxed configuration. -p918 -ssVunrelaxed-configuration-positions -p919 -(dp920 -g891 -Vfloat -p921 -sg893 -I01 -sg894 -(lp922 -g40 -aI3 -asg896 -I01 -sg897 -VThe [x,y,z] coordinates of each particle in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p923 -ssVunrelaxed-configuration-forces -p924 -(dp925 -g891 -Vfloat -p926 -sg893 -I01 -sg894 -(lp927 -g40 -aI3 -asg896 -I00 -sg897 -VThe [x,y,z] components of the force on each particle in the unrelaxed configuration. -p928 -ssVunrelaxed-potential-energy -p929 -(dp930 -g891 -Vfloat -p931 -sg893 -I01 -sg894 -(lp932 -sg896 -I01 -sg897 -VThe potential energy of the unrelaxed configuration. -p933 -ssVrelaxed-cauchy-stress -p934 -(dp935 -g891 -Vfloat -p936 -sg893 -I01 -sg894 -(lp937 -I6 -asg896 -I00 -sg897 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p938 -ssVrelaxed-configuration-positions -p939 -(dp940 -g891 -Vfloat -p941 -sg893 -I01 -sg894 -(lp942 -g40 -aI3 -asg896 -I01 -sg897 -VThe [x,y,z] coordinates of each particle in the relaxed configuration. -p943 -ssVrelaxed-configuration-forces -p944 -(dp945 -g891 -Vfloat -p946 -sg893 -I01 -sg894 -(lp947 -g40 -aI3 -asg896 -I00 -sg897 -VThe [x,y,z] components of the force on each particle in a relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p948 -ssVrelaxed-potential-energy -p949 -(dp950 -g891 -Vfloat -p951 -sg893 -I01 -sg894 -(lp952 -sg896 -I01 -sg897 -VThe potential energy of the relaxed configuration. -p953 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed -p954 -(dp955 -Vproperty-id -p956 -Vtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed -p957 -sVproperty-title -p958 -VStatic calculation of a non-orthogonal periodic cell of particles (cell relaxed, particles fixed) -p959 -sVproperty-description -p960 -VEnergy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles at zero absolute temperature in an unrelaxed configuration and a corresponding relaxed configuration. The periodic cell vectors are allowed to change in the course of relaxation, but the fractional particle positions are held fixed. -p961 -sVspecies -p962 -(dp963 -Vtype -p964 -Vstring -p965 -sVhas-unit -p966 -I00 -sVextent -p967 -(lp968 -g40 -asVrequired -p969 -I01 -sVdescription -p970 -VThe element symbol for each particle. -p971 -ssVunrelaxed-periodic-cell-vector-1 -p972 -(dp973 -g964 -Vfloat -p974 -sg966 -I01 -sg967 -(lp975 -I3 -asg969 -I01 -sg970 -VThe [x,y,z] components of periodic cell vector 1 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p976 -ssVunrelaxed-periodic-cell-vector-2 -p977 -(dp978 -g964 -Vfloat -p979 -sg966 -I01 -sg967 -(lp980 -I3 -asg969 -I01 -sg970 -VThe [x,y,z] components of periodic cell vector 2 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p981 -ssVunrelaxed-periodic-cell-vector-3 -p982 -(dp983 -g964 -Vfloat -p984 -sg966 -I01 -sg967 -(lp985 -I3 -asg969 -I01 -sg970 -VThe [x,y,z] components of periodic cell vector 3 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p986 -ssVunrelaxed-cauchy-stress -p987 -(dp988 -g964 -Vfloat -p989 -sg966 -I01 -sg967 -(lp990 -I6 -asg969 -I00 -sg970 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the unrelaxed configuration. -p991 -ssVunrelaxed-configuration-positions -p992 -(dp993 -g964 -Vfloat -p994 -sg966 -I01 -sg967 -(lp995 -g40 -aI3 -asg969 -I01 -sg970 -VThe [x,y,z] coordinates of each particle in the unrelaxed configuration. Note that these positions are given in absolute units, but it is the fractional positions of the coordinates that are held fixed when the energy of the periodic cell is minimized with respect to the cell vectors. This means that at the end of the minimization in general the positions are no longer equal to the values stored in this array. Instead the fractional coordinates in the unrelaxed configuration would have to be computed and then multiplied by the relaxed cell vectors to obain the final positions. -p996 -ssVunrelaxed-configuration-forces -p997 -(dp998 -g964 -Vfloat -p999 -sg966 -I01 -sg967 -(lp1000 -g40 -aI3 -asg969 -I00 -sg970 -VThe [x,y,z] components of the force on each particle in the unrelaxed configuration. -p1001 -ssVunrelaxed-potential-energy -p1002 -(dp1003 -g964 -Vfloat -p1004 -sg966 -I01 -sg967 -(lp1005 -sg969 -I01 -sg970 -VThe potential energy of the unrelaxed configuration. -p1006 -ssVrelaxed-periodic-cell-vector-1 -p1007 -(dp1008 -g964 -Vfloat -p1009 -sg966 -I01 -sg967 -(lp1010 -I3 -asg969 -I01 -sg970 -VThe [x,y,z] components of periodic cell vector 1 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1011 -ssVrelaxed-periodic-cell-vector-2 -p1012 -(dp1013 -g964 -Vfloat -p1014 -sg966 -I01 -sg967 -(lp1015 -I3 -asg969 -I01 -sg970 -VThe [x,y,z] components of periodic cell vector 2 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1016 -ssVrelaxed-periodic-cell-vector-3 -p1017 -(dp1018 -g964 -Vfloat -p1019 -sg966 -I01 -sg967 -(lp1020 -I3 -asg969 -I01 -sg970 -VThe [x,y,z] components of periodic cell vector 3 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1021 -ssVrelaxed-cauchy-stress -p1022 -(dp1023 -g964 -Vfloat -p1024 -sg966 -I01 -sg967 -(lp1025 -I6 -asg969 -I00 -sg970 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p1026 -ssVrelaxed-configuration-forces -p1027 -(dp1028 -g964 -Vfloat -p1029 -sg966 -I01 -sg967 -(lp1030 -g40 -aI3 -asg969 -I00 -sg970 -VThe [x,y,z] components of the force on each particle in the relaxed configuration. These forces will not be zero in general since the particle positions are held fixed during minimization. -p1031 -ssVrelaxed-potential-energy -p1032 -(dp1033 -g964 -Vfloat -p1034 -sg966 -I01 -sg967 -(lp1035 -sg969 -I01 -sg970 -VThe potential energy of the relaxed configuration. -p1036 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed -p1037 -(dp1038 -Vproperty-id -p1039 -Vtag:staff@noreply.openkim.org,2014-04-15:property/configuration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed -p1040 -sVproperty-title -p1041 -VStatic calculation of a non-orthogonal periodic cell of particles (cell relaxed, particles relaxed) -p1042 -sVproperty-description -p1043 -VEnergy (and, optionally, forces and stresses) of a non-orthogonal periodic cell of particles in an unrelaxed configuration and a corresponding relaxed configuration. Both the periodic cell vectors and the particle positions are allowed to change in the course of relaxation. -p1044 -sVspecies -p1045 -(dp1046 -Vtype -p1047 -Vstring -p1048 -sVhas-unit -p1049 -I00 -sVextent -p1050 -(lp1051 -g40 -asVrequired -p1052 -I01 -sVdescription -p1053 -VThe element symbol for each particle. -p1054 -ssVunrelaxed-periodic-cell-vector-1 -p1055 -(dp1056 -g1047 -Vfloat -p1057 -sg1049 -I01 -sg1050 -(lp1058 -I3 -asg1052 -I01 -sg1053 -VThe [x,y,z] components of periodic cell vector 1 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1059 -ssVunrelaxed-periodic-cell-vector-2 -p1060 -(dp1061 -g1047 -Vfloat -p1062 -sg1049 -I01 -sg1050 -(lp1063 -I3 -asg1052 -I01 -sg1053 -VThe [x,y,z] components of periodic cell vector 2 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1064 -ssVunrelaxed-periodic-cell-vector-3 -p1065 -(dp1066 -g1047 -Vfloat -p1067 -sg1049 -I01 -sg1050 -(lp1068 -I3 -asg1052 -I01 -sg1053 -VThe [x,y,z] components of periodic cell vector 3 in the unrelaxed configuration. Corresponds to the initial guess used in the minimization. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1069 -ssVunrelaxed-cauchy-stress -p1070 -(dp1071 -g1047 -Vfloat -p1072 -sg1049 -I01 -sg1050 -(lp1073 -I6 -asg1052 -I00 -sg1053 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the unrelaxed configuration. -p1074 -ssVunrelaxed-configuration-positions -p1075 -(dp1076 -g1047 -Vfloat -p1077 -sg1049 -I01 -sg1050 -(lp1078 -g40 -aI3 -asg1052 -I01 -sg1053 -VThe [x,y,z] coordinates of each particle in an unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p1079 -ssVunrelaxed-configuration-forces -p1080 -(dp1081 -g1047 -Vfloat -p1082 -sg1049 -I01 -sg1050 -(lp1083 -g40 -aI3 -asg1052 -I00 -sg1053 -VThe [x,y,z] components of the force on each particle in an unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p1084 -ssVunrelaxed-potential-energy -p1085 -(dp1086 -g1047 -Vfloat -p1087 -sg1049 -I01 -sg1050 -(lp1088 -sg1052 -I01 -sg1053 -VThe potential energy of the unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p1089 -ssVrelaxed-periodic-cell-vector-1 -p1090 -(dp1091 -g1047 -Vfloat -p1092 -sg1049 -I01 -sg1050 -(lp1093 -I3 -asg1052 -I01 -sg1053 -VThe [x,y,z] components of periodic cell vector 1 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1094 -ssVrelaxed-periodic-cell-vector-2 -p1095 -(dp1096 -g1047 -Vfloat -p1097 -sg1049 -I01 -sg1050 -(lp1098 -I3 -asg1052 -I01 -sg1053 -VThe [x,y,z] components of periodic cell vector 2 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1099 -ssVrelaxed-periodic-cell-vector-3 -p1100 -(dp1101 -g1047 -Vfloat -p1102 -sg1049 -I01 -sg1050 -(lp1103 -I3 -asg1052 -I01 -sg1053 -VThe [x,y,z] components of periodic cell vector 3 in the relaxed configuration. Note that periodic cell vector 1, periodic cell vector 2, and periodic cell vector 3 must form a right-handed triad. -p1104 -ssVrelaxed-cauchy-stress -p1105 -(dp1106 -g1047 -Vfloat -p1107 -sg1049 -I01 -sg1050 -(lp1108 -I6 -asg1052 -I00 -sg1053 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress conjugate to the shape of the periodic cell in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p1109 -ssVrelaxed-configuration-positions -p1110 -(dp1111 -g1047 -Vfloat -p1112 -sg1049 -I01 -sg1050 -(lp1113 -g40 -aI3 -asg1052 -I01 -sg1053 -VThe [x,y,z] coordinates of each particle in the relaxed configuration. -p1114 -ssVrelaxed-configuration-forces -p1115 -(dp1116 -g1047 -Vfloat -p1117 -sg1049 -I01 -sg1050 -(lp1118 -g40 -aI3 -asg1052 -I00 -sg1053 -VThe [x,y,z] components of the force on each particle in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p1119 -ssVrelaxed-potential-energy -p1120 -(dp1121 -g1047 -Vfloat -p1122 -sg1049 -I01 -sg1050 -(lp1123 -sg1052 -I01 -sg1053 -VThe potential energy of the relaxed configuration. -p1124 -sssVtag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed -p1125 -(dp1126 -Vproperty-id -p1127 -Vtag:staff@noreply.openkim.org,2015-10-12:property/configuration-periodic-2d-cell-fixed-particles-fixed -p1128 -sVproperty-title -p1129 -VStatic calculation of a two-dimensional periodic cell of particles (cell fixed, particles fixed) -p1130 -sVproperty-description -p1131 -VEnergy (and, optionally, forces and stresses) of a two-dimensional periodic cell of particles at zero absolute temperature with the cell and particles held fixed. -p1132 -sVspecies -p1133 -(dp1134 -Vtype -p1135 -Vstring -p1136 -sVhas-unit -p1137 -I00 -sVextent -p1138 -(lp1139 -g40 -asVrequired -p1140 -I01 -sVdescription -p1141 -VThe element symbol for each particle. -p1142 -ssVunrelaxed-periodic-cell-vector-1 -p1143 -(dp1144 -g1135 -Vfloat -p1145 -sg1137 -I01 -sg1138 -(lp1146 -I3 -asg1140 -I01 -sg1141 -VThe [x,y,z] components of periodic cell vector 1 must be aligned along the x axis of the Cartesian coordinates (i.e. define it as [a, 0, 0]), where `a' is a positive constant. -p1147 -ssVunrelaxed-periodic-cell-vector-2 -p1148 -(dp1149 -g1135 -Vfloat -p1150 -sg1137 -I01 -sg1138 -(lp1151 -I3 -asg1140 -I01 -sg1141 -VThe [x,y,z] components of periodic cell vector 2 must be defined as [b, c, 0], where `b' is a non-negative constant and `c' is a positive constant -p1152 -ssVunrelaxed-configuration-positions -p1153 -(dp1154 -g1135 -Vfloat -p1155 -sg1137 -I01 -sg1138 -(lp1156 -g40 -aI3 -asg1140 -I01 -sg1141 -VThe [x,y,z] coordinates of each particle. The cross product of `unrelaxed-periodic-cell-vector-1' and `unrelaxed-periodic-cell-vector-2' determines the positive direction for the z coordinate (assuming the right-hand rule). The x and y coordinates of all the particles should be located in the parallelogram defined by `unrelaxed-periodic-cell-vector-1' and `unrelaxed-periodic-cell-vector-2'. -p1157 -ssVunrelaxed-potential-energy -p1158 -(dp1159 -g1135 -Vfloat -p1160 -sg1137 -I01 -sg1138 -(lp1161 -sg1140 -I01 -sg1141 -VThe potential energy of the system. -p1162 -ssVunrelaxed-configuration-forces -p1163 -(dp1164 -g1135 -Vfloat -p1165 -sg1137 -I01 -sg1138 -(lp1166 -g40 -aI3 -asg1140 -I00 -sg1141 -VThe [x,y,z] components of the force on each particle. The cross product of `unrelaxed-periodic-cell-vector-1' and `unrelaxed-periodic-cell-vector-2' determines the positive direction for the z component (assuming the right-hand rule). -p1167 -ssVunrelaxed-2d-cauchy-stress -p1168 -(dp1169 -g1135 -Vfloat -p1170 -sg1137 -I01 -sg1138 -(lp1171 -I3 -asg1140 -I00 -sg1141 -VThe [xx,yy,xy] (i.e. [11,22,12]) components of the 2D Cauchy stress conjugate to the shape of the periodic cell. -p1172 -sssVtag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt -p1173 -(dp1174 -Vproperty-id -p1175 -Vtag:staff@noreply.openkim.org,2021-02-24:property/dislocation-core-energy-cubic-crystal-npt -p1176 -sVproperty-title -p1177 -VDislocation core energy of a cubic crystal at zero temperature and a given stress state -p1178 -sVproperty-description -p1179 -VThe dislocation core energy is a mathematical construct designed to remove the singularity in the stress and strain fields of elasticity theory. The total strain energy is computed relative to the cohesive energy of the ideal crystal, and the core energy is the portion of this energy that is not accounted for by an elastic model. In this property, the dislocation core energy for cubic crystals at zero temperature and a given stress state is reported using three different elastic models: nonsingular, isotropic, and anisotropic. Each of these core energies is computed for a range of dislocation core cutoff radii and is given in units of energy per unit dislocation line length. -p1180 -sVshort-name -p1181 -(dp1182 -Vtype -p1183 -Vstring -p1184 -sVhas-unit -p1185 -I00 -sVextent -p1186 -(lp1187 -g40 -asVrequired -p1188 -I00 -sVdescription -p1189 -VShort name defining the cubic crystal type. -p1190 -ssVspecies -p1191 -(dp1192 -g1183 -Vstring -p1193 -sg1185 -I00 -sg1186 -(lp1194 -g40 -asg1188 -I01 -sg1189 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p1195 -ssg49 -(dp1196 -g1183 -Vfloat -p1197 -sg1185 -I01 -sg1186 -(lp1198 -sg1188 -I01 -sg1189 -VEquilibrium conventional lattice constant of the cubic crystal. -p1199 -ssVbasis-atom-coordinates -p1200 -(dp1201 -g1183 -Vfloat -p1202 -sg1185 -I00 -sg1186 -(lp1203 -g40 -aI3 -asg1188 -I01 -sg1189 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1204 -ssVspace-group -p1205 -(dp1206 -g1183 -Vstring -p1207 -sg1185 -I00 -sg1186 -(lp1208 -sg1188 -I00 -sg1189 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1209 -ssVwyckoff-species -p1210 -(dp1211 -g1183 -Vstring -p1212 -sg1185 -I00 -sg1186 -(lp1213 -g40 -asg1188 -I00 -sg1189 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1214 -ssVwyckoff-multiplicity-and-letter -p1215 -(dp1216 -g1183 -Vstring -p1217 -sg1185 -I00 -sg1186 -(lp1218 -g40 -asg1188 -I00 -sg1189 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1219 -ssVwyckoff-coordinates -p1220 -(dp1221 -g1183 -Vfloat -p1222 -sg1185 -I00 -sg1186 -(lp1223 -g40 -aI3 -asg1188 -I00 -sg1189 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1224 -ssVcauchy-stress -p1225 -(dp1226 -g1183 -Vfloat -p1227 -sg1185 -I01 -sg1186 -(lp1228 -I6 -asg1188 -I01 -sg1189 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal. -p1229 -ssVslip-plane-miller-indices -p1230 -(dp1231 -g1183 -Vint -p1232 -sg1185 -I00 -sg1186 -(lp1233 -I3 -asg1188 -I01 -sg1189 -VThe vector of Miller indices defining the slip plane of the dislocation, e.g. [1, 1, 1]. -p1234 -ssVdislocation-line-direction -p1235 -(dp1236 -g1183 -Vint -p1237 -sg1185 -I00 -sg1186 -(lp1238 -I3 -asg1188 -I01 -sg1189 -VThe crystallographic direction of the dislocation line direction given as a vector of three integers, e.g. [1, 1, 2]. -p1239 -ssVburgers-vector-direction -p1240 -(dp1241 -g1183 -Vfloat -p1242 -sg1185 -I00 -sg1186 -(lp1243 -I3 -asg1188 -I01 -sg1189 -VThe Burgers vector of the dislocation given as a vector of three real numbers relative to the lattice parameter, e.g. [0.5, 0.5, 0] corresponds to a Burgers vectors of [a/2, a/2, 0]. -p1244 -ssVdislocation-core-radius -p1245 -(dp1246 -g1183 -Vfloat -p1247 -sg1185 -I00 -sg1186 -(lp1248 -g40 -asg1188 -I01 -sg1189 -VThe physical region where atoms present a radically distinct local order with respect to the bulk. This parameter is given in terms of the magnitude of the Burgers vector, e.g. a value of 0.5 defines a core region of radius b/2 where b is the magnitude of the Burgers vector. -p1249 -ssVcore-energy-nonsingular -p1250 -(dp1251 -g1183 -Vfloat -p1252 -sg1185 -I01 -sg1186 -(lp1253 -g40 -asg1188 -I01 -sg1189 -VThe core energy calculated using the (isotropic) nonsingular theory of elasticity. This is computed by spreading the Burgers vector isotropically around the dislocation line in the region defined by the core radius. For reference, see W. Cai, A. Arsenlis, C. R. Weinberger, and V. V. Bulatov, A non-singular continuum theory of dislocations, JMPS 54, 561 (2006). -p1254 -ssVcore-energy-isotropic -p1255 -(dp1256 -g1183 -Vfloat -p1257 -sg1185 -I01 -sg1186 -(lp1258 -g40 -asg1188 -I01 -sg1189 -VThe core energy calculated using the classical theory of isotropic elasticity using a finite dislocation core cutoff radius. -p1259 -ssVcore-energy-anisotropic -p1260 -(dp1261 -g1183 -Vfloat -p1262 -sg1185 -I01 -sg1186 -(lp1263 -g40 -asg1188 -I01 -sg1189 -VThe core energy calculated using the classical theory of anisotropic elasticity using a finite dislocation core cutoff radius. -p1264 -ssVrelaxed-core-positions -p1265 -(dp1266 -g1183 -Vfloat -p1267 -sg1185 -I01 -sg1186 -(lp1268 -g40 -aI3 -asg1188 -I00 -sg1189 -VThe [x,y,z] coordinates of each particle after relaxation. -p1269 -sssVtag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt -p1270 -(dp1271 -Vproperty-id -p1272 -Vtag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt -p1273 -sVproperty-title -p1274 -VIsothermal first strain gradient elastic constants for a cubic crystal at its equilibrium lattice spacing -p1275 -sVproperty-description -p1276 -VThe three independent isothermal classical elastic constants c11, c12 and c44, and eleven independent isothermal strain gradient elastic constants d-1-1, d-1-2, d-1-3, d-2-2, d-2-3, d-2-4, d-2-5, d-3-3, d-3-5, d-16-16 and d-16-17, for a cubic crystal at 0 K and zero stress. (The classical and strain gradient elastic constants are the 2nd derivatives of the strain energy density with respect to the Lagrangian strain and the Lagrangian strain gradient respectively.) -p1277 -sVshort-name -p1278 -(dp1279 -Vtype -p1280 -Vstring -p1281 -sVhas-unit -p1282 -I00 -sVextent -p1283 -(lp1284 -g40 -asVrequired -p1285 -I00 -sVdescription -p1286 -VShort name defining the cubic crystal type. -p1287 -ssVspecies -p1288 -(dp1289 -g1280 -Vstring -p1290 -sg1282 -I00 -sg1283 -(lp1291 -g40 -asg1285 -I01 -sg1286 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p1292 -ssg49 -(dp1293 -g1280 -Vfloat -p1294 -sg1282 -I01 -sg1283 -(lp1295 -sg1285 -I01 -sg1286 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p1296 -ssVbasis-atom-coordinates -p1297 -(dp1298 -g1280 -Vfloat -p1299 -sg1282 -I00 -sg1283 -(lp1300 -g40 -aI3 -asg1285 -I01 -sg1286 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1301 -ssVspace-group -p1302 -(dp1303 -g1280 -Vstring -p1304 -sg1282 -I00 -sg1283 -(lp1305 -sg1285 -I00 -sg1286 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1306 -ssVwyckoff-species -p1307 -(dp1308 -g1280 -Vstring -p1309 -sg1282 -I00 -sg1283 -(lp1310 -g40 -asg1285 -I00 -sg1286 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1311 -ssVwyckoff-multiplicity-and-letter -p1312 -(dp1313 -g1280 -Vstring -p1314 -sg1282 -I00 -sg1283 -(lp1315 -g40 -asg1285 -I00 -sg1286 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1316 -ssVwyckoff-coordinates -p1317 -(dp1318 -g1280 -Vfloat -p1319 -sg1282 -I00 -sg1283 -(lp1320 -g40 -aI3 -asg1285 -I00 -sg1286 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1321 -ssVtemperature -p1322 -(dp1323 -g1280 -Vfloat -p1324 -sg1282 -I01 -sg1283 -(lp1325 -sg1285 -I01 -sg1286 -VTemperature of the crystal. -p1326 -ssVc11 -p1327 -(dp1328 -g1280 -Vfloat -p1329 -sg1282 -I01 -sg1283 -(lp1330 -sg1285 -I01 -sg1286 -VThe 11 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1111 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1331 -ssVc12 -p1332 -(dp1333 -g1280 -Vfloat -p1334 -sg1282 -I01 -sg1283 -(lp1335 -sg1285 -I01 -sg1286 -VThe 12 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1122 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1336 -ssVc44 -p1337 -(dp1338 -g1280 -Vfloat -p1339 -sg1282 -I01 -sg1283 -(lp1340 -sg1285 -I01 -sg1286 -VThe 44 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 2323 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1341 -ssVd-1-1 -p1342 -(dp1343 -g1280 -Vfloat -p1344 -sg1282 -I01 -sg1283 -(lp1345 -sg1285 -I01 -sg1286 -VThe 1-1 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111111 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1346 -ssVd-1-2 -p1347 -(dp1348 -g1280 -Vfloat -p1349 -sg1282 -I01 -sg1283 -(lp1350 -sg1285 -I01 -sg1286 -VThe 1-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111221 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1351 -ssVd-1-3 -p1352 -(dp1353 -g1280 -Vfloat -p1354 -sg1282 -I01 -sg1283 -(lp1355 -sg1285 -I01 -sg1286 -VThe 1-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111122 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1356 -ssVd-2-2 -p1357 -(dp1358 -g1280 -Vfloat -p1359 -sg1282 -I01 -sg1283 -(lp1360 -sg1285 -I01 -sg1286 -VThe 2-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221221 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1361 -ssVd-2-3 -p1362 -(dp1363 -g1280 -Vfloat -p1364 -sg1282 -I01 -sg1283 -(lp1365 -sg1285 -I01 -sg1286 -VThe 2-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221122 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1366 -ssVd-2-4 -p1367 -(dp1368 -g1280 -Vfloat -p1369 -sg1282 -I01 -sg1283 -(lp1370 -sg1285 -I01 -sg1286 -VThe 2-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221331 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1371 -ssVd-2-5 -p1372 -(dp1373 -g1280 -Vfloat -p1374 -sg1282 -I01 -sg1283 -(lp1375 -sg1285 -I01 -sg1286 -VThe 2-5 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 221133 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1376 -ssVd-3-3 -p1377 -(dp1378 -g1280 -Vfloat -p1379 -sg1282 -I01 -sg1283 -(lp1380 -sg1285 -I01 -sg1286 -VThe 3-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 122122 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1381 -ssVd-3-5 -p1382 -(dp1383 -g1280 -Vfloat -p1384 -sg1282 -I01 -sg1283 -(lp1385 -sg1285 -I01 -sg1286 -VThe 3-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 122133 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1386 -ssVd-16-16 -p1387 -(dp1388 -g1280 -Vfloat -p1389 -sg1282 -I01 -sg1283 -(lp1390 -sg1285 -I01 -sg1286 -VThe 16-16 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123123 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1391 -ssVd-16-17 -p1392 -(dp1393 -g1280 -Vfloat -p1394 -sg1282 -I01 -sg1283 -(lp1395 -sg1285 -I01 -sg1286 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123132 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1396 -sssVtag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt -p1397 -(dp1398 -Vproperty-id -p1399 -Vtag:staff@noreply.openkim.org,2016-05-24:property/elastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt -p1400 -sVproperty-title -p1401 -VIsothermal first strain gradient elastic constants for a hexagonal crystal at its equilibrium lattice spacing -p1402 -sVproperty-description -p1403 -VThe five independent isothermal classical elastic constants c11, c12, c13, c33, and c55, and twenty two independent isothermal strain gradient elastic constants d-1-1, d-6-6, d-6-7, d-6-8, d-6-9, d-6-10, d-7-7, d-8-9, d-8-10, d-9-9, d-9-10, d-10-10, d-11-11, d-11-12, d-11-13, d-12-12, d-12-13, d-13-13, d-16-16, d-16-17, d-17-17, and d-17-18, for a hexagonal simple lattice at 0 K and zero stress. The orientation of the lattice is such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. (The classical and strain gradient elastic constants are the 2nd derivatives of the strain energy density with respect to the Lagrangian strain and the Lagrangian strain gradient respectively.) -p1404 -sVshort-name -p1405 -(dp1406 -Vtype -p1407 -Vstring -p1408 -sVhas-unit -p1409 -I00 -sVextent -p1410 -(lp1411 -g40 -asVrequired -p1412 -I00 -sVdescription -p1413 -VShort name defining the hexagonal crystal type. -p1414 -ssVspecies -p1415 -(dp1416 -g1407 -Vstring -p1417 -sg1409 -I00 -sg1410 -(lp1418 -g40 -asg1412 -I01 -sg1413 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p1419 -ssg49 -(dp1420 -g1407 -Vfloat -p1421 -sg1409 -I01 -sg1410 -(lp1422 -sg1412 -I01 -sg1413 -VAverage equilibrium conventional lattice constant of the hexagonal crystal. -p1423 -ssg121 -(dp1424 -g1407 -Vfloat -p1425 -sg1409 -I01 -sg1410 -(lp1426 -sg1412 -I01 -sg1413 -VThe average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p1427 -ssVbasis-atom-coordinates -p1428 -(dp1429 -g1407 -Vfloat -p1430 -sg1409 -I00 -sg1410 -(lp1431 -g40 -aI3 -asg1412 -I01 -sg1413 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1432 -ssVspace-group -p1433 -(dp1434 -g1407 -Vstring -p1435 -sg1409 -I00 -sg1410 -(lp1436 -sg1412 -I00 -sg1413 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1437 -ssVwyckoff-species -p1438 -(dp1439 -g1407 -Vstring -p1440 -sg1409 -I00 -sg1410 -(lp1441 -g40 -asg1412 -I00 -sg1413 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1442 -ssVwyckoff-multiplicity-and-letter -p1443 -(dp1444 -g1407 -Vstring -p1445 -sg1409 -I00 -sg1410 -(lp1446 -g40 -asg1412 -I00 -sg1413 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1447 -ssVwyckoff-coordinates -p1448 -(dp1449 -g1407 -Vfloat -p1450 -sg1409 -I00 -sg1410 -(lp1451 -g40 -aI3 -asg1412 -I00 -sg1413 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1452 -ssVtemperature -p1453 -(dp1454 -g1407 -Vfloat -p1455 -sg1409 -I01 -sg1410 -(lp1456 -sg1412 -I01 -sg1413 -VTemperature of the crystal. -p1457 -ssVc11 -p1458 -(dp1459 -g1407 -Vfloat -p1460 -sg1409 -I01 -sg1410 -(lp1461 -sg1412 -I01 -sg1413 -VThe 11 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1111 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. -p1462 -ssVc12 -p1463 -(dp1464 -g1407 -Vfloat -p1465 -sg1409 -I01 -sg1410 -(lp1466 -sg1412 -I01 -sg1413 -VThe 12 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1122 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. -p1467 -ssVc13 -p1468 -(dp1469 -g1407 -Vfloat -p1470 -sg1409 -I01 -sg1410 -(lp1471 -sg1412 -I01 -sg1413 -VThe 13 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1133 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. -p1472 -ssVc33 -p1473 -(dp1474 -g1407 -Vfloat -p1475 -sg1409 -I01 -sg1410 -(lp1476 -sg1412 -I01 -sg1413 -VThe 33 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 3333 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. -p1477 -ssVc55 -p1478 -(dp1479 -g1407 -Vfloat -p1480 -sg1409 -I01 -sg1410 -(lp1481 -sg1412 -I01 -sg1413 -VThe 55 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1313 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that the e_3 axis is perpendicular to the basal plane, and the e_2 axis passes through a vertex of the hexagon. -p1482 -ssVd-1-1 -p1483 -(dp1484 -g1407 -Vfloat -p1485 -sg1409 -I01 -sg1410 -(lp1486 -sg1412 -I01 -sg1413 -VThe 1-1 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 111111 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1487 -ssVd-6-6 -p1488 -(dp1489 -g1407 -Vfloat -p1490 -sg1409 -I01 -sg1410 -(lp1491 -sg1412 -I01 -sg1413 -VThe 1-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222222 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1492 -ssVd-6-7 -p1493 -(dp1494 -g1407 -Vfloat -p1495 -sg1409 -I01 -sg1410 -(lp1496 -sg1412 -I01 -sg1413 -VThe 1-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222112 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1497 -ssVd-6-8 -p1498 -(dp1499 -g1407 -Vfloat -p1500 -sg1409 -I01 -sg1410 -(lp1501 -sg1412 -I01 -sg1413 -VThe 2-2 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222121 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1502 -ssVd-6-9 -p1503 -(dp1504 -g1407 -Vfloat -p1505 -sg1409 -I01 -sg1410 -(lp1506 -sg1412 -I01 -sg1413 -VThe 2-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222332 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1507 -ssVd-6-10 -p1508 -(dp1509 -g1407 -Vfloat -p1510 -sg1409 -I01 -sg1410 -(lp1511 -sg1412 -I01 -sg1413 -VThe 2-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 222233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1512 -ssVd-7-7 -p1513 -(dp1514 -g1407 -Vfloat -p1515 -sg1409 -I01 -sg1410 -(lp1516 -sg1412 -I01 -sg1413 -VThe 2-5 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 112112 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1517 -ssVd-8-9 -p1518 -(dp1519 -g1407 -Vfloat -p1520 -sg1409 -I01 -sg1410 -(lp1521 -sg1412 -I01 -sg1413 -VThe 3-3 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 121332 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1522 -ssVd-8-10 -p1523 -(dp1524 -g1407 -Vfloat -p1525 -sg1409 -I01 -sg1410 -(lp1526 -sg1412 -I01 -sg1413 -VThe 3-4 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 121233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1527 -ssVd-9-9 -p1528 -(dp1529 -g1407 -Vfloat -p1530 -sg1409 -I01 -sg1410 -(lp1531 -sg1412 -I01 -sg1413 -VThe 16-16 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 332332 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1532 -ssVd-9-10 -p1533 -(dp1534 -g1407 -Vfloat -p1535 -sg1409 -I01 -sg1410 -(lp1536 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 332233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1537 -ssVd-10-10 -p1538 -(dp1539 -g1407 -Vfloat -p1540 -sg1409 -I01 -sg1410 -(lp1541 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 233233 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1542 -ssVd-11-11 -p1543 -(dp1544 -g1407 -Vfloat -p1545 -sg1409 -I01 -sg1410 -(lp1546 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 333333 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1547 -ssVd-11-12 -p1548 -(dp1549 -g1407 -Vfloat -p1550 -sg1409 -I01 -sg1410 -(lp1551 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 333113 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1552 -ssVd-11-13 -p1553 -(dp1554 -g1407 -Vfloat -p1555 -sg1409 -I01 -sg1410 -(lp1556 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 333131 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1557 -ssVd-12-12 -p1558 -(dp1559 -g1407 -Vfloat -p1560 -sg1409 -I01 -sg1410 -(lp1561 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 113113 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1562 -ssVd-12-13 -p1563 -(dp1564 -g1407 -Vfloat -p1565 -sg1409 -I01 -sg1410 -(lp1566 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 113131 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1567 -ssVd-13-13 -p1568 -(dp1569 -g1407 -Vfloat -p1570 -sg1409 -I01 -sg1410 -(lp1571 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 131131 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1572 -ssVd-16-16 -p1573 -(dp1574 -g1407 -Vfloat -p1575 -sg1409 -I01 -sg1410 -(lp1576 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123123 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1577 -ssVd-16-17 -p1578 -(dp1579 -g1407 -Vfloat -p1580 -sg1409 -I01 -sg1410 -(lp1581 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 123132 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1582 -ssVd-17-17 -p1583 -(dp1584 -g1407 -Vfloat -p1585 -sg1409 -I01 -sg1410 -(lp1586 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 132132 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1587 -ssVd-17-18 -p1588 -(dp1589 -g1407 -Vfloat -p1590 -sg1409 -I01 -sg1410 -(lp1591 -sg1412 -I01 -sg1413 -VThe 16-17 component of the isothermal first strain gradient elasticty matrix in Voigt notation, which corresponds to the 132231 component of the 6th order first strain gradient elasticity tensor. The orthonormal basis used to express the tensor should be aligned such that e_1 and e_2 axis lie on the hexagonal plane of the crystal. -p1592 -sssVtag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt -p1593 -(dp1594 -Vproperty-id -p1595 -Vtag:staff@noreply.openkim.org,2014-05-21:property/elastic-constants-isothermal-cubic-crystal-npt -p1596 -sVproperty-title -p1597 -VIsothermal elastic constants for a cubic crystal at constant temperature and stress -p1598 -sVproperty-description -p1599 -VThe three independent isothermal elastic constants c11, c12 and c44 for a cubic crystal at a constant given temperature and stress. (The elastic constants are the 2nd derivatives of the strain energy density with respect to strain.) -p1600 -sVshort-name -p1601 -(dp1602 -Vtype -p1603 -Vstring -p1604 -sVhas-unit -p1605 -I00 -sVextent -p1606 -(lp1607 -g40 -asVrequired -p1608 -I00 -sVdescription -p1609 -VShort name defining the cubic crystal type. -p1610 -ssVspecies -p1611 -(dp1612 -g1603 -Vstring -p1613 -sg1605 -I00 -sg1606 -(lp1614 -g40 -asg1608 -I01 -sg1609 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p1615 -ssg49 -(dp1616 -g1603 -Vfloat -p1617 -sg1605 -I01 -sg1606 -(lp1618 -sg1608 -I01 -sg1609 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p1619 -ssVbasis-atom-coordinates -p1620 -(dp1621 -g1603 -Vfloat -p1622 -sg1605 -I00 -sg1606 -(lp1623 -g40 -aI3 -asg1608 -I01 -sg1609 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1624 -ssVspace-group -p1625 -(dp1626 -g1603 -Vstring -p1627 -sg1605 -I00 -sg1606 -(lp1628 -sg1608 -I00 -sg1609 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1629 -ssVwyckoff-species -p1630 -(dp1631 -g1603 -Vstring -p1632 -sg1605 -I00 -sg1606 -(lp1633 -g40 -asg1608 -I00 -sg1609 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1634 -ssVwyckoff-multiplicity-and-letter -p1635 -(dp1636 -g1603 -Vstring -p1637 -sg1605 -I00 -sg1606 -(lp1638 -g40 -asg1608 -I00 -sg1609 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1639 -ssVwyckoff-coordinates -p1640 -(dp1641 -g1603 -Vfloat -p1642 -sg1605 -I00 -sg1606 -(lp1643 -g40 -aI3 -asg1608 -I00 -sg1609 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1644 -ssVtemperature -p1645 -(dp1646 -g1603 -Vfloat -p1647 -sg1605 -I01 -sg1606 -(lp1648 -sg1608 -I01 -sg1609 -VTemperature of the crystal. -p1649 -ssVcauchy-stress -p1650 -(dp1651 -g1603 -Vfloat -p1652 -sg1605 -I01 -sg1606 -(lp1653 -I6 -asg1608 -I01 -sg1609 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p1654 -ssVc11 -p1655 -(dp1656 -g1603 -Vfloat -p1657 -sg1605 -I01 -sg1606 -(lp1658 -sg1608 -I01 -sg1609 -VThe 11 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1111 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1659 -ssVc12 -p1660 -(dp1661 -g1603 -Vfloat -p1662 -sg1605 -I01 -sg1606 -(lp1663 -sg1608 -I01 -sg1609 -VThe 12 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 1122 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1664 -ssVc44 -p1665 -(dp1666 -g1603 -Vfloat -p1667 -sg1605 -I01 -sg1606 -(lp1668 -sg1608 -I01 -sg1609 -VThe 44 component of the isothermal elasticty matrix in Voigt notation, which corresponds to the 2323 component of the 4th order elasticity tensor. The orthonormal basis used to express the tensor should be aligned with the cubic 4-fold axes of the crystal. -p1669 -ssVexcess -p1670 -(dp1671 -g1603 -Vfloat -p1672 -sg1605 -I01 -sg1606 -(lp1673 -sg1608 -I00 -sg1609 -VTotal square numerical asymmetry of the calculated elastic constants, in Voigt notation, \u005csqrt{ \u005csum_{i>j} (\u005cC_{ij} - \u005cC_{ji})^2 } -p1674 -sssVtag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt -p1675 -(dp1676 -Vproperty-id -p1677 -Vtag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt -p1678 -sVproperty-title -p1679 -VEnthalpy of Mixing versus Concentration for Substitutional Random Binary A-B Cubic Crystal Alloys under NPT Conditions -p1680 -sVproperty-description -p1681 -VEnthalpy of mixing per atom versus concentration for a random solid solution binary alloy of species A and B at constant pressure and temperature. The enthalpy of mixing per atom is defined as the enthalpy of the binary alloy less the enthalpies of each species in the same crystal structure normalized by the number of atoms. This property is defined for the case where at zero concentration the crystal consists entirely of A atoms, and at concentration one, the crystal is entirely of species B. At each concentration the potential energy of the binary alloy is minimized. -p1682 -sVshort-name -p1683 -(dp1684 -Vtype -p1685 -Vstring -p1686 -sVhas-unit -p1687 -I00 -sVextent -p1688 -(lp1689 -g40 -asVrequired -p1690 -I00 -sVdescription -p1691 -VShort name defining the cubic crystal type for both the crystal made of A atoms, the crystal made of B atoms, and the random alloy. -p1692 -ssVbasis-atom-coordinates -p1693 -(dp1694 -g1685 -Vfloat -p1695 -sg1687 -I00 -sg1688 -(lp1696 -g40 -aI3 -asg1690 -I01 -sg1691 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1697 -ssVspace-group -p1698 -(dp1699 -g1685 -Vstring -p1700 -sg1687 -I00 -sg1688 -(lp1701 -sg1690 -I00 -sg1691 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1702 -ssVwyckoff-multiplicity-and-letter -p1703 -(dp1704 -g1685 -Vstring -p1705 -sg1687 -I00 -sg1688 -(lp1706 -g40 -asg1690 -I00 -sg1691 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1707 -ssVwyckoff-coordinates -p1708 -(dp1709 -g1685 -Vfloat -p1710 -sg1687 -I00 -sg1688 -(lp1711 -g40 -aI3 -asg1690 -I00 -sg1691 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1712 -ssVA-species -p1713 -(dp1714 -g1685 -Vstring -p1715 -sg1687 -I00 -sg1688 -(lp1716 -sg1690 -I01 -sg1691 -VThe element symbol of the A-type atom. -p1717 -ssVA-a -p1718 -(dp1719 -g1685 -Vfloat -p1720 -sg1687 -I01 -sg1688 -(lp1721 -sg1690 -I01 -sg1691 -VThe lattice constant of the A-type crystal. -p1722 -ssVA-wyckoff-species -p1723 -(dp1724 -g1685 -Vstring -p1725 -sg1687 -I00 -sg1688 -(lp1726 -g40 -asg1690 -I00 -sg1691 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the A-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1727 -ssVB-species -p1728 -(dp1729 -g1685 -Vstring -p1730 -sg1687 -I00 -sg1688 -(lp1731 -sg1690 -I01 -sg1691 -VThe element symbol of the B-type atom. -p1732 -ssVB-a -p1733 -(dp1734 -g1685 -Vfloat -p1735 -sg1687 -I01 -sg1688 -(lp1736 -sg1690 -I01 -sg1691 -VThe lattice constant of the B-type crystal. -p1737 -ssVB-wyckoff-species -p1738 -(dp1739 -g1685 -Vstring -p1740 -sg1687 -I00 -sg1688 -(lp1741 -g40 -asg1690 -I00 -sg1691 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the B-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1742 -ssg49 -(dp1743 -g1685 -Vfloat -p1744 -sg1687 -I01 -sg1688 -(lp1745 -g40 -asg1690 -I00 -sg1691 -VA vector of the conventional unit cell lattice constants of the cubic crystal at each concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). At the concentration corresponding to all A-type atoms, the value in this array should be identical to the value of the 'A-a' key; similarly, at the concentration corresponding to all B-type atoms, the value in this array should be identical to the value of the 'B-a' key. -p1746 -ssVcauchy-stress -p1747 -(dp1748 -g1685 -Vfloat -p1749 -sg1687 -I01 -sg1688 -(lp1750 -I6 -asg1690 -I01 -sg1691 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). -p1751 -ssVconcentration -p1752 -(dp1753 -g1685 -Vfloat -p1754 -sg1687 -I00 -sg1688 -(lp1755 -g40 -asg1690 -I01 -sg1691 -VThe fraction of lattice sites occupied by B atoms with the rest occupied by A atoms. For example, a concentration of 0 means all lattice sites are occupied by A atoms, and a concentration of 1 means all lattice sites are occupied by B atoms. The concentration must be in the range [0,1]. -p1756 -ssVtemperature -p1757 -(dp1758 -g1685 -Vfloat -p1759 -sg1687 -I01 -sg1688 -(lp1760 -sg1690 -I01 -sg1691 -VTemperature of the crystal. -p1761 -ssVenthalpy-of-mixing -p1762 -(dp1763 -g1685 -Vfloat -p1764 -sg1687 -I01 -sg1688 -(lp1765 -g40 -asg1690 -I01 -sg1691 -VEnthalpy of mixing per atom associated with the\u000a corresponding concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). Enthalpy of mixing per atom is defined as H_mix = H_A+B - (N_A*H_A - N_B*H_B)/(N_A + N_B), where H_A+B is the average enthalpy of mixing per atom of the random alloy at a given concentration, H_A is the enthalpy of mixing per atom of the crystal when entirely made of A atoms, H_B is the enthalpy of mixing per atom of the crystal when entirely made of B atoms, N_A is the number of A atoms, N_B is the number of B atoms. The total number of atoms is N_A + N_B. -p1766 -ssVcrystal-is-stable -p1767 -(dp1768 -g1685 -Vbool -p1769 -sg1687 -I00 -sg1688 -(lp1770 -g40 -asg1690 -I01 -sg1691 -VIf true, the crystal at the corresponding concentration is locally stable with respect to both macroscopic modes (Cauchy-Born stability) and microscopic modes (phonon stability). Local stability implies the existence of a barrier to reach other stable states. The order of elements in this array must correspond to the order of the entries listed in 'concentration'. -p1771 -sssVtag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt -p1772 -(dp1773 -Vproperty-id -p1774 -Vtag:staff@noreply.openkim.org,2017-07-31:property/enthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt -p1775 -sVproperty-title -p1776 -VEnthalpy of Mixing versus Concentration for Substitutional Random Binary A-B Cubic Crystal Alloys under NVT Conditions -p1777 -sVproperty-description -p1778 -VEnthalpy of mixing per atom versus concentration for a random solid solution binary alloy of species A and B at constant volume and temperature. The enthalpy of mixing per atom is defined as the enthalpy of the binary alloy less the enthalpies of each species in the same crystal structure normalized by the number of atoms. This property is defined for the case where at zero concentration the crystal consists entirely of A atoms, and at concentration one, the crystal is entirely of species B. At each concentration the potential energy of the binary alloy is minimized. -p1779 -sVshort-name -p1780 -(dp1781 -Vtype -p1782 -Vstring -p1783 -sVhas-unit -p1784 -I00 -sVextent -p1785 -(lp1786 -g40 -asVrequired -p1787 -I00 -sVdescription -p1788 -VShort name defining the cubic crystal type for both the crystal made of A atoms, the crystal made of B atoms, and the random alloy. -p1789 -ssVbasis-atom-coordinates -p1790 -(dp1791 -g1782 -Vfloat -p1792 -sg1784 -I00 -sg1785 -(lp1793 -g40 -aI3 -asg1787 -I01 -sg1788 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1794 -ssVspace-group -p1795 -(dp1796 -g1782 -Vstring -p1797 -sg1784 -I00 -sg1785 -(lp1798 -sg1787 -I00 -sg1788 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1799 -ssVwyckoff-multiplicity-and-letter -p1800 -(dp1801 -g1782 -Vstring -p1802 -sg1784 -I00 -sg1785 -(lp1803 -g40 -asg1787 -I00 -sg1788 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1804 -ssVwyckoff-coordinates -p1805 -(dp1806 -g1782 -Vfloat -p1807 -sg1784 -I00 -sg1785 -(lp1808 -g40 -aI3 -asg1787 -I00 -sg1788 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1809 -ssVA-species -p1810 -(dp1811 -g1782 -Vstring -p1812 -sg1784 -I00 -sg1785 -(lp1813 -sg1787 -I01 -sg1788 -VThe element symbol of the A-type atom. -p1814 -ssVA-a -p1815 -(dp1816 -g1782 -Vfloat -p1817 -sg1784 -I01 -sg1785 -(lp1818 -sg1787 -I01 -sg1788 -VThe lattice constant of the A-type crystal. -p1819 -ssVA-wyckoff-species -p1820 -(dp1821 -g1782 -Vstring -p1822 -sg1784 -I00 -sg1785 -(lp1823 -g40 -asg1787 -I00 -sg1788 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the A-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1824 -ssVB-species -p1825 -(dp1826 -g1782 -Vstring -p1827 -sg1784 -I00 -sg1785 -(lp1828 -sg1787 -I01 -sg1788 -VThe element symbol of the B-type atom. -p1829 -ssVB-a -p1830 -(dp1831 -g1782 -Vfloat -p1832 -sg1784 -I01 -sg1785 -(lp1833 -sg1787 -I01 -sg1788 -VThe lattice constant of the B-type crystal. -p1834 -ssVB-wyckoff-species -p1835 -(dp1836 -g1782 -Vstring -p1837 -sg1784 -I00 -sg1785 -(lp1838 -g40 -asg1787 -I00 -sg1788 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the B-type crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1839 -ssg49 -(dp1840 -g1782 -Vfloat -p1841 -sg1784 -I01 -sg1785 -(lp1842 -g40 -asg1787 -I01 -sg1788 -VA vector of conventional unit cell lattice constants of the cubic crystal that are used at each concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). At the concentration corresponding to all A-type atoms, the value in this array should be identical to the value of the 'A-a' key; similarly, at the concentration corresponding to all B-type atoms, the value in this array should be identical to the value of the 'B-a' key. -p1843 -ssVcauchy-stress -p1844 -(dp1845 -g1782 -Vfloat -p1846 -sg1784 -I01 -sg1785 -(lp1847 -g40 -aI6 -asg1787 -I00 -sg1788 -VA two-dimensional array containing the [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the crystal at each concentration. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The six-dimensional vectors collected this key should be ordered so as to be consistent with the entries listed in 'concentration'. -p1848 -ssVconcentration -p1849 -(dp1850 -g1782 -Vfloat -p1851 -sg1784 -I00 -sg1785 -(lp1852 -g40 -asg1787 -I01 -sg1788 -VThe fraction of lattice sites occupied by B atoms with the rest occupied by A atoms. For example, a concentration of 0 means all lattice sites are occupied by A atoms, and a concentration of 1 means all lattice sites are occupied by B atoms. The concentration must be in the range [0,1]. -p1853 -ssVtemperature -p1854 -(dp1855 -g1782 -Vfloat -p1856 -sg1784 -I01 -sg1785 -(lp1857 -sg1787 -I01 -sg1788 -VTemperature of the crystal. -p1858 -ssVenthalpy-of-mixing -p1859 -(dp1860 -g1782 -Vfloat -p1861 -sg1784 -I01 -sg1785 -(lp1862 -g40 -asg1787 -I01 -sg1788 -VEnthalpy of mixing per atom associated with the corresponding concentration (the order of elements in this array must correspond to the order of the entries listed in 'concentration'). Enthalpy of mixing per atom is defined as H_mix = H_A+B - (N_A*H_A - N_B*H_B)/(N_A + N_B), where H_A+B is the average enthalpy of mixing per atom of the random alloy at a given concentration, H_A is the enthalpy of mixing per atom of the crystal when entirely made of A atoms, H_B is the enthalpy of mixing per atom of the crystal when entirely made of B atoms, N_A is the number of A atoms, N_B is the number of B atoms. The total number of atoms is N_A + N_B. -p1863 -ssVcrystal-is-stable -p1864 -(dp1865 -g1782 -Vbool -p1866 -sg1784 -I00 -sg1785 -(lp1867 -g40 -asg1787 -I01 -sg1788 -VIf true, the crystal at the corresponding concentration is locally stable with respect to both macroscopic modes (Cauchy-Born stability) and microscopic modes (phonon stability). Local stability implies the existence of a barrier to reach other stable states. The order of elements in this array must correspond to the order of the entries listed in 'concentration'. -p1868 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt -p1869 -(dp1870 -Vproperty-id -p1871 -Vtag:staff@noreply.openkim.org,2015-05-26:property/extrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt -p1872 -sVproperty-title -p1873 -VRelaxed extrinsic stacking fault energy for a monoatomic fcc crystal at a zero temperature and a given pressure -p1874 -sVproperty-description -p1875 -VThe extrinsic stacking fault (ESF) energy for a monoatomic fcc crystal at zero temperature and a specified pressure. The ESF corresponds to an ABC|BA|BC stacking, which can also be understood as a two-layer twin nucleus. Relaxation of the atomic coordinates is performed in the direction perpendicular to the fault plane. -p1876 -sg49 -(dp1877 -Vtype -p1878 -Vfloat -p1879 -sVhas-unit -p1880 -I01 -sVextent -p1881 -(lp1882 -sVrequired -p1883 -I01 -sVdescription -p1884 -VZero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure. -p1885 -ssVspecies -p1886 -(dp1887 -g1878 -Vstring -p1888 -sg1880 -I00 -sg1881 -(lp1889 -g40 -asg1883 -I01 -sg1884 -VThe element symbol of the fcc crystal material. This should contain only a single entry. -p1890 -ssVcauchy-stress -p1891 -(dp1892 -g1878 -Vfloat -p1893 -sg1880 -I01 -sg1881 -(lp1894 -I6 -asg1883 -I01 -sg1884 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p1895 -ssVextrinsic-stacking-fault-energy -p1896 -(dp1897 -g1878 -Vfloat -p1898 -sg1880 -I01 -sg1881 -(lp1899 -sg1883 -I01 -sg1884 -VThe relaxed extrinsic stacking fault energy in units of energy per area. -p1900 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt -p1901 -(dp1902 -Vproperty-id -p1903 -Vtag:staff@noreply.openkim.org,2015-05-26:property/gamma-surface-relaxed-fcc-crystal-npt -p1904 -sVproperty-title -p1905 -VThe relaxed gamma surface created by rigid slip of a (111) plane on a grid of points defined by [112] and [-110] directions in a monoatomic fcc crystal at zero temperature and a given pressure -p1906 -sVproperty-description -p1907 -VThe relaxed energy-per-area versus all possible slips lying in the (111) lattice plane defines the Gamma surface. Due to periodicity of the crystal lattice, it suffices to sample a grid of points that span a*sqrt(6)/2 and a*sqrt(2)/2 along the [112] and [-110] directions, respectively. This is achieved through a sequence of rigid displacements applied to one part of an fcc crystal relative to another on the (111) plane on a grid defined by the [112] and [-110] directions at zero temperature and a specified pressure. Following each slip displacement, a relaxation of the atomic coordinates is performed in the direction perpendicular to the slip plane to arrive at the energy-per-area. -p1908 -sg49 -(dp1909 -Vtype -p1910 -Vfloat -p1911 -sVhas-unit -p1912 -I01 -sVextent -p1913 -(lp1914 -sVrequired -p1915 -I01 -sVdescription -p1916 -VZero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure. -p1917 -ssVspecies -p1918 -(dp1919 -g1910 -Vstring -p1920 -sg1912 -I00 -sg1913 -(lp1921 -g40 -asg1915 -I01 -sg1916 -VThe element symbol of the fcc crystal material. This should contain only a single entry. -p1922 -ssVcauchy-stress -p1923 -(dp1924 -g1910 -Vfloat -p1925 -sg1912 -I01 -sg1913 -(lp1926 -I6 -asg1915 -I01 -sg1916 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p1927 -ssVfault-plane-shift-fraction-112 -p1928 -(dp1929 -g1910 -Vfloat -p1930 -sg1912 -I00 -sg1913 -(lp1931 -g40 -asg1915 -I01 -sg1916 -VA list of relative displacements of the two crystal parts used to compute the gamma surface in the [112] direction. Each element corresponds to the relative displacement of the two crystal parts as a fraction of the the total displacement, a*sqrt(6)/2 in the [112] direction. -p1932 -ssVfault-plane-shift-fraction-110 -p1933 -(dp1934 -g1910 -Vfloat -p1935 -sg1912 -I00 -sg1913 -(lp1936 -g40 -asg1915 -I01 -sg1916 -VA list of relative displacements of the two crystal parts used to compute the gamma surface in the [-110] direction. Each element corresponds to the relative displacement of the two crystal parts as a fraction of the the total displacement, a*sqrt(2)/2 in the [-110] direction. -p1937 -ssVgamma-surface -p1938 -(dp1939 -g1910 -Vfloat -p1940 -sg1912 -I01 -sg1913 -(lp1941 -g40 -ag40 -asg1915 -I01 -sg1916 -VThe relaxed excess energy-per-area of the fault plane for a given relative displacement of the two crystal parts. All of the elements in a given sub-array contained within this array correspond to a single fractional displacement in the [-110] direction, but different fractional displacements in the [112] direction. That is, if each sub-array contained in this array is taken to be a column in a matrix, the rows of this matrix would correspond to the elements in 'fault-plane-shift-fraction-112' and its columns would correspond to the elements of 'fault-plane-shift-fraction-110'. -p1942 -sssVtag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal -p1943 -(dp1944 -Vproperty-id -p1945 -Vtag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-ideal-cubic-crystal -p1946 -sVproperty-title -p1947 -VIdeal symmetric tilt grain boundary energy for a cubic crystal -p1948 -sVproperty-description -p1949 -VThe unrelaxed energy of a grain boundary for a cubic bi-crystal characterized by a symmetric tilt axis and angle for zero applied loads. -p1950 -sVshort-name -p1951 -(dp1952 -Vtype -p1953 -Vstring -p1954 -sVhas-unit -p1955 -I00 -sVextent -p1956 -(lp1957 -g40 -asVrequired -p1958 -I00 -sVdescription -p1959 -VShort name defining the cubic crystal type. -p1960 -ssVspecies -p1961 -(dp1962 -g1953 -Vstring -p1963 -sg1955 -I00 -sg1956 -(lp1964 -g40 -asg1958 -I01 -sg1959 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p1965 -ssg49 -(dp1966 -g1953 -Vfloat -p1967 -sg1955 -I01 -sg1956 -(lp1968 -sg1958 -I01 -sg1959 -VEquilibrium conventional lattice constant of the cubic crystal. -p1969 -ssVbasis-atom-coordinates -p1970 -(dp1971 -g1953 -Vfloat -p1972 -sg1955 -I00 -sg1956 -(lp1973 -g40 -aI3 -asg1958 -I01 -sg1959 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p1974 -ssVspace-group -p1975 -(dp1976 -g1953 -Vstring -p1977 -sg1955 -I00 -sg1956 -(lp1978 -sg1958 -I00 -sg1959 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p1979 -ssVwyckoff-species -p1980 -(dp1981 -g1953 -Vstring -p1982 -sg1955 -I00 -sg1956 -(lp1983 -g40 -asg1958 -I00 -sg1959 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p1984 -ssVwyckoff-multiplicity-and-letter -p1985 -(dp1986 -g1953 -Vstring -p1987 -sg1955 -I00 -sg1956 -(lp1988 -g40 -asg1958 -I00 -sg1959 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p1989 -ssVwyckoff-coordinates -p1990 -(dp1991 -g1953 -Vfloat -p1992 -sg1955 -I00 -sg1956 -(lp1993 -g40 -aI3 -asg1958 -I00 -sg1959 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p1994 -ssVtilt-axis -p1995 -(dp1996 -g1953 -Vint -p1997 -sg1955 -I00 -sg1956 -(lp1998 -I3 -asg1958 -I01 -sg1959 -VThe crystallographic direction of the tilt axis. Valid options are directions belonging to the following families: <001>, <110>, <111>, <112>. -p1999 -ssVtilt-angle -p2000 -(dp2001 -g1953 -Vfloat -p2002 -sg1955 -I01 -sg1956 -(lp2003 -sg1958 -I01 -sg1959 -VTotal misorientation angle between the two grains. Must be strictly greater than zero and strictly less than 180 degrees. -p2004 -ssVinterface-offset -p2005 -(dp2006 -g1953 -Vstring -p2007 -sg1955 -I00 -sg1956 -(lp2008 -sg1958 -I00 -sg1959 -VDetails of the location of the grain boundary interface plane within the unit cells of the grains for crystals containing more than one basis atom. Since there is no standard notation for this, it is specified as a free text field. -p2009 -ssVminimum-atom-separation -p2010 -(dp2011 -g1953 -Vfloat -p2012 -sg1955 -I01 -sg1956 -(lp2013 -sg1958 -I00 -sg1959 -VThe minimal atomic separation in the bi-crystal. This parameter is necessary for characterizing the grain boundary, since when computing a grain boundary energy it is conventional to prevent situations where a pair of atoms are too close together by removing one of them. (Note that in such cases all removed atoms must be taken from the same grain.) In situations where the minimum atom separation is unknown (e.g., experimental data), use the perfect crystal nearest neighbor distance. -p2014 -ssVideal-grain-boundary-energy -p2015 -(dp2016 -g1953 -Vfloat -p2017 -sg1955 -I01 -sg1956 -(lp2018 -sg1958 -I01 -sg1959 -VUnrelaxed grain boundary excess energy density (energy per unit area), i.e. the difference between the energy of the bi-crystal containing the symmetric tilt grain boundary structure and the perfect crystal per unit area of the interface. -p2019 -ssVsigma -p2020 -(dp2021 -g1953 -Vint -p2022 -sg1955 -I00 -sg1956 -(lp2023 -sg1958 -I00 -sg1959 -VSigma is the ratio of volume of the coincident-site lattice unit cell to the lattice unit cell volume. -p2024 -sssVtag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal -p2025 -(dp2026 -Vproperty-id -p2027 -Vtag:brunnels@noreply.openkim.org,2016-01-23:property/grain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal -p2028 -sVproperty-title -p2029 -VRelaxed symmetric tilt grain boundary energy for a cubic crystal -p2030 -sVproperty-description -p2031 -VThe relaxed energy of a grain boundary for a cubic bi-crystal characterized by a symmetric tilt axis and angle for zero applied loads. -p2032 -sVshort-name -p2033 -(dp2034 -Vtype -p2035 -Vstring -p2036 -sVhas-unit -p2037 -I00 -sVextent -p2038 -(lp2039 -g40 -asVrequired -p2040 -I00 -sVdescription -p2041 -VShort name defining the cubic crystal type. -p2042 -ssVspecies -p2043 -(dp2044 -g2035 -Vstring -p2045 -sg2037 -I00 -sg2038 -(lp2046 -g40 -asg2040 -I01 -sg2041 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p2047 -ssg49 -(dp2048 -g2035 -Vfloat -p2049 -sg2037 -I01 -sg2038 -(lp2050 -sg2040 -I01 -sg2041 -VEquilibrium conventional lattice constant of the cubic crystal. -p2051 -ssVbasis-atom-coordinates -p2052 -(dp2053 -g2035 -Vfloat -p2054 -sg2037 -I00 -sg2038 -(lp2055 -g40 -aI3 -asg2040 -I01 -sg2041 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p2056 -ssVspace-group -p2057 -(dp2058 -g2035 -Vstring -p2059 -sg2037 -I00 -sg2038 -(lp2060 -sg2040 -I00 -sg2041 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2061 -ssVwyckoff-species -p2062 -(dp2063 -g2035 -Vstring -p2064 -sg2037 -I00 -sg2038 -(lp2065 -g40 -asg2040 -I00 -sg2041 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p2066 -ssVwyckoff-multiplicity-and-letter -p2067 -(dp2068 -g2035 -Vstring -p2069 -sg2037 -I00 -sg2038 -(lp2070 -g40 -asg2040 -I00 -sg2041 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p2071 -ssVwyckoff-coordinates -p2072 -(dp2073 -g2035 -Vfloat -p2074 -sg2037 -I00 -sg2038 -(lp2075 -g40 -aI3 -asg2040 -I00 -sg2041 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p2076 -ssVtilt-axis -p2077 -(dp2078 -g2035 -Vint -p2079 -sg2037 -I00 -sg2038 -(lp2080 -I3 -asg2040 -I01 -sg2041 -VThe crystallographic direction of the tilt axis. Valid options are directions belonging to the following families: <001>, <110>, <111>, <112>. -p2081 -ssVtilt-angle -p2082 -(dp2083 -g2035 -Vfloat -p2084 -sg2037 -I01 -sg2038 -(lp2085 -sg2040 -I01 -sg2041 -VTotal misorientation angle between the two grains. Must be strictly greater than zero and strictly less than 180 degrees. -p2086 -ssVinterface-offset -p2087 -(dp2088 -g2035 -Vstring -p2089 -sg2037 -I00 -sg2038 -(lp2090 -sg2040 -I00 -sg2041 -VDetails of the location of the grain boundary interface plane within the unit cells of the grains for crystals containing more than one basis atom. Since there is no standard notation for this, it is specified as a free text field. -p2091 -ssVminimum-atom-separation -p2092 -(dp2093 -g2035 -Vfloat -p2094 -sg2037 -I01 -sg2038 -(lp2095 -sg2040 -I00 -sg2041 -VThe minimal atomic separation in the initial unrelaxed bi-crystal. This parameter is necessary for characterizing the grain boundary, since when computing a grain boundary energy it is conventional to prevent situations where a pair of of atoms are too close together by removing one of them. (Note that in such cases all removed atoms must be taken from the same grain.) In situations where the minimum atom separation is unknown (e.g., experimental data), use the perfect crystal nearest neighbor distance. -p2096 -ssVrelaxed-grain-boundary-energy -p2097 -(dp2098 -g2035 -Vfloat -p2099 -sg2037 -I01 -sg2038 -(lp2100 -sg2040 -I01 -sg2041 -VRelaxed grain boundary excess energy density (energy per unit area), i.e. the difference between the ground state energy of the bi-crystal containing the symmetric tilt grain boundary structure and the energy of an ideal crystal with the same number of atoms per unit area of the interface. -p2101 -ssVrelaxed-interface-positions -p2102 -(dp2103 -g2035 -Vfile -p2104 -sg2037 -I00 -sg2038 -(lp2105 -sg2040 -I00 -sg2041 -VA file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle after relaxation, and super-cell periodicity data for the computed grain boundary. -p2106 -ssVsigma -p2107 -(dp2108 -g2035 -Vint -p2109 -sg2037 -I00 -sg2038 -(lp2110 -sg2040 -I00 -sg2041 -VSigma is the ratio of volume of the coincident-site lattice unit cell to the lattice unit cell volume. -p2111 -sssVtag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal -p2112 -(dp2113 -Vproperty-id -p2114 -Vtag:brunnels@noreply.openkim.org,2016-02-18:property/grain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal -p2115 -sVproperty-title -p2116 -VRelaxed symmetric tilt grain boundary energy versus tilt angle relation for a cubic crystal -p2117 -sVproperty-description -p2118 -VThe relaxed energy versus tilt angle relation of a grain boundary for a cubic bi-crystal characterized by a symmetric tilt axis and angle for zero applied loads. -p2119 -sVshort-name -p2120 -(dp2121 -Vtype -p2122 -Vstring -p2123 -sVhas-unit -p2124 -I00 -sVextent -p2125 -(lp2126 -g40 -asVrequired -p2127 -I00 -sVdescription -p2128 -VShort name defining the cubic crystal type. -p2129 -ssVspecies -p2130 -(dp2131 -g2122 -Vstring -p2132 -sg2124 -I00 -sg2125 -(lp2133 -g40 -asg2127 -I01 -sg2128 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p2134 -ssg49 -(dp2135 -g2122 -Vfloat -p2136 -sg2124 -I01 -sg2125 -(lp2137 -sg2127 -I01 -sg2128 -VEquilibrium conventional lattice constant of the cubic crystal. -p2138 -ssVbasis-atom-coordinates -p2139 -(dp2140 -g2122 -Vfloat -p2141 -sg2124 -I00 -sg2125 -(lp2142 -g40 -aI3 -asg2127 -I01 -sg2128 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p2143 -ssVspace-group -p2144 -(dp2145 -g2122 -Vstring -p2146 -sg2124 -I00 -sg2125 -(lp2147 -sg2127 -I00 -sg2128 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2148 -ssVwyckoff-species -p2149 -(dp2150 -g2122 -Vstring -p2151 -sg2124 -I00 -sg2125 -(lp2152 -g40 -asg2127 -I00 -sg2128 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p2153 -ssVwyckoff-multiplicity-and-letter -p2154 -(dp2155 -g2122 -Vstring -p2156 -sg2124 -I00 -sg2125 -(lp2157 -g40 -asg2127 -I00 -sg2128 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p2158 -ssVwyckoff-coordinates -p2159 -(dp2160 -g2122 -Vfloat -p2161 -sg2124 -I00 -sg2125 -(lp2162 -g40 -aI3 -asg2127 -I00 -sg2128 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p2163 -ssVtilt-axis -p2164 -(dp2165 -g2122 -Vint -p2166 -sg2124 -I00 -sg2125 -(lp2167 -I3 -asg2127 -I01 -sg2128 -VThe crystallographic direction of the tilt axis. Valid options are directions belonging to the following families: <001>, <110>, <111>, <112>. -p2168 -ssVtilt-angle -p2169 -(dp2170 -g2122 -Vfloat -p2171 -sg2124 -I01 -sg2125 -(lp2172 -g40 -asg2127 -I01 -sg2128 -VVector of total misorientation angles between the two grains. Each element must be between zero and 180 degrees. The order of the entries must correspond to the order of the entries in other vector key quantities as stated. -p2173 -ssVinterface-offset -p2174 -(dp2175 -g2122 -Vstring -p2176 -sg2124 -I00 -sg2125 -(lp2177 -g40 -asg2127 -I00 -sg2128 -VVector of the details of the location of the grain boundary interface plane within the unit cells of the grains for crystals containing more than one basis atom. Since there is no standard notation for this, it is specified as a free text field. The order of the entries must correspond to the order of the entries in 'tilt-angle'. -p2178 -ssVminimum-atom-separation -p2179 -(dp2180 -g2122 -Vfloat -p2181 -sg2124 -I01 -sg2125 -(lp2182 -g40 -asg2127 -I00 -sg2128 -VVector of the minimal atomic separation in the initial unrelaxed bi-crystals. This parameter is necessary for characterizing the grain boundary, since when computing a grain boundary energy it is conventional to prevent situations where a pair of of atoms are too close together by removing one of them. (Note that in such cases all removed atoms must be taken from the same grain.) In situations where the minimum atom separation is unknown (e.g., experimental data), use the perfect crystal nearest neighbor distance. The order of the entries must correspond to the order of the entries in 'tilt-angle'. -p2183 -ssVrelaxed-grain-boundary-energy -p2184 -(dp2185 -g2122 -Vfloat -p2186 -sg2124 -I01 -sg2125 -(lp2187 -g40 -asg2127 -I01 -sg2128 -VVector of relaxed grain boundary excess energy densities (energy per unit area), i.e. the difference between the ground state energy of the bi-crystal containing the symmetric tilt grain boundary structure and the energy of an ideal crystal with the same number of atoms per unit area of the interface. The order of the entries must correspond to the order of the entries in 'tilt-angle'. -p2188 -ssVrelaxed-interface-positions -p2189 -(dp2190 -g2122 -Vfile -p2191 -sg2124 -I00 -sg2125 -(lp2192 -g40 -asg2127 -I00 -sg2128 -VA file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle after relaxation, and super-cell periodicity data for the computed grain boundary. The order of listed files must correspond to the order of entries in 'tilt-angle'. -p2193 -ssVsigma -p2194 -(dp2195 -g2122 -Vint -p2196 -sg2124 -I00 -sg2125 -(lp2197 -g40 -asg2127 -I00 -sg2128 -VSigma is the ratio of volume of the coincident-site lattice unit cell to the lattice unit cell volume. The order of the entries must correspond to the order of the entries in 'tilt-angle'. -p2198 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt -p2199 -(dp2200 -Vproperty-id -p2201 -Vtag:staff@noreply.openkim.org,2015-05-26:property/intrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt -p2202 -sVproperty-title -p2203 -VRelaxed intrinsic stacking fault energy for a monoatomic fcc crystal at zero temperature and a given pressure -p2204 -sVproperty-description -p2205 -VThe intrinsic stacking fault (ISF) energy for a monoatomic fcc crystal at zero temperature and a specified pressure. The ISF corresponds to a fault of the form ABC|BCA. Relaxation of the atomic coordinates is performed in the direction perpendicular to the fault plane. -p2206 -sg49 -(dp2207 -Vtype -p2208 -Vfloat -p2209 -sVhas-unit -p2210 -I01 -sVextent -p2211 -(lp2212 -sVrequired -p2213 -I01 -sVdescription -p2214 -VZero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure. -p2215 -ssVspecies -p2216 -(dp2217 -g2208 -Vstring -p2218 -sg2210 -I00 -sg2211 -(lp2219 -g40 -asg2213 -I01 -sg2214 -VThe element symbol of the fcc crystal material. This should contain only a single entry. -p2220 -ssVcauchy-stress -p2221 -(dp2222 -g2208 -Vfloat -p2223 -sg2210 -I01 -sg2211 -(lp2224 -I6 -asg2213 -I01 -sg2214 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p2225 -ssVintrinsic-stacking-fault-energy -p2226 -(dp2227 -g2208 -Vfloat -p2228 -sg2210 -I01 -sg2211 -(lp2229 -sg2213 -I01 -sg2214 -VThe relaxed intrinsic stacking fault energy in units of energy per area. -p2230 -sssVtag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt -p2231 -(dp2232 -Vproperty-id -p2233 -Vtag:staff@noreply.openkim.org,2015-07-30:property/linear-thermal-expansion-coefficient-cubic-crystal-npt -p2234 -sVproperty-title -p2235 -VLinear thermal expansion coefficient of a cubic crystal structure at given temperature and pressure -p2236 -sVproperty-description -p2237 -VLinear thermal expansion coefficient of a cubic crystal structure at given temperature and pressure, calculated from (change-in-length)/(original-length)/(change-in-temperature). -p2238 -sVshort-name -p2239 -(dp2240 -Vtype -p2241 -Vstring -p2242 -sVhas-unit -p2243 -I00 -sVextent -p2244 -(lp2245 -g40 -asVrequired -p2246 -I00 -sVdescription -p2247 -VShort name defining the cubic crystal type. -p2248 -ssVspecies -p2249 -(dp2250 -g2241 -Vstring -p2251 -sg2243 -I00 -sg2244 -(lp2252 -g40 -asg2246 -I01 -sg2247 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p2253 -ssg49 -(dp2254 -g2241 -Vfloat -p2255 -sg2243 -I01 -sg2244 -(lp2256 -sg2246 -I01 -sg2247 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p2257 -ssVbasis-atom-coordinates -p2258 -(dp2259 -g2241 -Vfloat -p2260 -sg2243 -I00 -sg2244 -(lp2261 -g40 -aI3 -asg2246 -I01 -sg2247 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p2262 -ssVspace-group -p2263 -(dp2264 -g2241 -Vstring -p2265 -sg2243 -I00 -sg2244 -(lp2266 -sg2246 -I00 -sg2247 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2267 -ssVwyckoff-species -p2268 -(dp2269 -g2241 -Vstring -p2270 -sg2243 -I00 -sg2244 -(lp2271 -g40 -asg2246 -I00 -sg2247 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p2272 -ssVwyckoff-multiplicity-and-letter -p2273 -(dp2274 -g2241 -Vstring -p2275 -sg2243 -I00 -sg2244 -(lp2276 -g40 -asg2246 -I00 -sg2247 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p2277 -ssVwyckoff-coordinates -p2278 -(dp2279 -g2241 -Vfloat -p2280 -sg2243 -I00 -sg2244 -(lp2281 -g40 -aI3 -asg2246 -I00 -sg2247 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p2282 -ssVtemperature -p2283 -(dp2284 -g2241 -Vfloat -p2285 -sg2243 -I01 -sg2244 -(lp2286 -sg2246 -I01 -sg2247 -VTemperature of the crystal. -p2287 -ssVlinear-thermal-expansion-coefficient -p2288 -(dp2289 -g2241 -Vfloat -p2290 -sg2243 -I01 -sg2244 -(lp2291 -sg2246 -I01 -sg2247 -VLinear thermal expansion coefficient. -p2292 -ssVcauchy-stress -p2293 -(dp2294 -g2241 -Vfloat -p2295 -sg2243 -I01 -sg2244 -(lp2296 -I6 -asg2246 -I01 -sg2247 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p2297 -sssVtag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal -p2298 -(dp2299 -Vproperty-id -p2300 -Vtag:staff@noreply.openkim.org,2014-08-21:property/melting-temperature-constant-pressure-cubic-crystal -p2301 -sVproperty-title -p2302 -VMelting temperature of a cubic crystal structure at a given hydrostatic stress -p2303 -sVproperty-description -p2304 -VMelting temperature of a cubic crystal structure at a given hydrostatic stress. This is the temperature at which the crystal and liquid are in thermal equilibrium. -p2305 -sVshort-name -p2306 -(dp2307 -Vtype -p2308 -Vstring -p2309 -sVhas-unit -p2310 -I00 -sVextent -p2311 -(lp2312 -g40 -asVrequired -p2313 -I00 -sVdescription -p2314 -VShort name defining the cubic crystal type at initialization. -p2315 -ssVspecies -p2316 -(dp2317 -g2308 -Vstring -p2318 -sg2310 -I00 -sg2311 -(lp2319 -g40 -asg2313 -I01 -sg2314 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p2320 -ssg49 -(dp2321 -g2308 -Vfloat -p2322 -sg2310 -I01 -sg2311 -(lp2323 -sg2313 -I01 -sg2314 -VAverage equilibrium conventional lattice constant of the cubic crystal at the melting temperature under the given hydrostatic conditions. -p2324 -ssVbasis-atom-coordinates -p2325 -(dp2326 -g2308 -Vfloat -p2327 -sg2310 -I00 -sg2311 -(lp2328 -g40 -aI3 -asg2313 -I01 -sg2314 -VFractional coordinates of the initial basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p2329 -ssVspace-group -p2330 -(dp2331 -g2308 -Vstring -p2332 -sg2310 -I00 -sg2311 -(lp2333 -sg2313 -I00 -sg2314 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2334 -ssVwyckoff-multiplicity-and-letter -p2335 -(dp2336 -g2308 -Vstring -p2337 -sg2310 -I00 -sg2311 -(lp2338 -g40 -asg2313 -I00 -sg2314 -VMultiplicity and standard letter of Wyckoff sites (e.g. 4a, 2b) needed to generate the starting cubic crystal lattice. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-coordinates' and 'wyckoff-species'. -p2339 -ssVwyckoff-coordinates -p2340 -(dp2341 -g2308 -Vfloat -p2342 -sg2310 -I00 -sg2311 -(lp2343 -g40 -aI3 -asg2313 -I00 -sg2314 -VCoordinates of the Wyckoff sites needed to generate the starting cubic crystal lattice, given as fractions of the crystal lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-multiplicity-and-letter' and 'wyckoff-species'. -p2344 -ssVwyckoff-species -p2345 -(dp2346 -g2308 -Vstring -p2347 -sg2310 -I00 -sg2311 -(lp2348 -g40 -asg2313 -I00 -sg2314 -VThe element symbol of the atomic species of the Wyckoff sites used to describe the starting cubic crystal structure. The order of the entries must correspond to the order of the entries in 'wyckoff-coordinates' and 'wyckoff-multiplicity-and-letter'. -p2349 -ssVmelting-temperature -p2350 -(dp2351 -g2308 -Vfloat -p2352 -sg2310 -I01 -sg2311 -(lp2353 -sg2313 -I01 -sg2314 -VMelting temperature of the cubic equilibrium crystal structure at the specified hydrostatic stress state. -p2354 -ssVcauchy-stress -p2355 -(dp2356 -g2308 -Vfloat -p2357 -sg2310 -I01 -sg2311 -(lp2358 -I6 -asg2313 -I01 -sg2314 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the system. Does not descriminate between stress in the liquid and stress in the solid. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p2359 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/monovacancy-formation-energy-monoatomic-cubic-diamond -p2360 -(dp2361 -Vproperty-id -p2362 -Vtag:staff@noreply.openkim.org,2014-04-15:property/monovacancy-formation-energy-monoatomic-cubic-diamond -p2363 -sVproperty-title -p2364 -VFormation energy of a monovacancy in a monoatomic cubic diamond crystal at zero absolute temperature -p2365 -sVproperty-description -p2366 -VUnrelaxed and relaxed formation potential energies of a monovacancy in a monoatomic cubic diamond crystal with stress-free boundary conditions at zero absolute temperature. -p2367 -sVspecies -p2368 -(dp2369 -Vtype -p2370 -Vstring -p2371 -sVhas-unit -p2372 -I00 -sVextent -p2373 -(lp2374 -sVrequired -p2375 -I01 -sVdescription -p2376 -VThe element symbol of the atoms. -p2377 -ssg49 -(dp2378 -g2370 -Vfloat -p2379 -sg2372 -I01 -sg2373 -(lp2380 -sg2375 -I01 -sg2376 -VEquilibrium (conventional) lattice constant of the perfect cubic diamond crystal (i.e. without the monovacancy introduced) at zero absolute temperature under zero stress conditions. -p2381 -ssVunrelaxed-configuration-positions -p2382 -(dp2383 -g2370 -Vfloat -p2384 -sg2372 -I01 -sg2373 -(lp2385 -g40 -aI3 -asg2375 -I01 -sg2376 -VThe [x,y,z] coordinates of each particle in the initial unrelaxed configuration. Corresponds to the initial guess used in the minimization. -p2386 -ssVunrelaxed-configuration-forces -p2387 -(dp2388 -g2370 -Vfloat -p2389 -sg2372 -I01 -sg2373 -(lp2390 -g40 -aI3 -asg2375 -I00 -sg2376 -VThe [x,y,z] components of the force on each particle in the initial unrelaxed configuration. -p2391 -ssVunrelaxed-formation-energy -p2392 -(dp2393 -g2370 -Vfloat -p2394 -sg2372 -I01 -sg2373 -(lp2395 -sg2375 -I01 -sg2376 -VFormation potential energy of the monovacancy in the unrelaxed configuration. -p2396 -ssVrelaxed-configuration-positions -p2397 -(dp2398 -g2370 -Vfloat -p2399 -sg2372 -I01 -sg2373 -(lp2400 -g40 -aI3 -asg2375 -I01 -sg2376 -VThe [x,y,z] coordinates of each particle in the relaxed configuration. -p2401 -ssVrelaxed-configuration-forces -p2402 -(dp2403 -g2370 -Vfloat -p2404 -sg2372 -I01 -sg2373 -(lp2405 -g40 -aI3 -asg2375 -I00 -sg2376 -VThe [x,y,z] components of the force on each particle in the relaxed configuration. These should be zero. The deviation is an indication of the accuracy of the relaxation. -p2406 -ssVrelaxed-formation-energy -p2407 -(dp2408 -g2370 -Vfloat -p2409 -sg2372 -I01 -sg2373 -(lp2410 -sg2375 -I01 -sg2376 -VFormation potential energy of the monovacancy in the relaxed configuration. -p2411 -sssVtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt -p2412 -(dp2413 -Vproperty-id -p2414 -Vtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-formation-free-energy-crystal-npt -p2415 -sVproperty-title -p2416 -VFormation free energy of a neutral monovacancy in a general crystal at finite temperature and stress -p2417 -sVproperty-description -p2418 -VGibbs free energy of formation of a neutral monovacancy in a (possibly multispecies) infinite host crystal lattice at a specific temperature and stress state relative to a given infinite monoatomic reference lattice ('reservoir') at a possibly different temperature and stress state. -p2419 -sVformation-free-energy -p2420 -(dp2421 -Vtype -p2422 -Vfloat -p2423 -sVhas-unit -p2424 -I01 -sVextent -p2425 -(lp2426 -sVrequired -p2427 -I01 -sVdescription -p2428 -VThe Gibbs free energy of formation associated with extracting the 'host-removed-atom' from the host crystal at the specified temperature and stress and adding it to a reservoir crystal at a possibly different temperature and stress. -p2429 -ssVreservoir-cohesive-free-energy -p2430 -(dp2431 -g2422 -Vfloat -p2432 -sg2424 -I01 -sg2425 -(lp2433 -sg2427 -I00 -sg2428 -VThe cohesive free energy (negative of the potential energy per atom) of the reservoir crystal under the specified temperature and stress conditions. -p2434 -ssVhost-removed-atom -p2435 -(dp2436 -g2422 -Vint -p2437 -sg2424 -I00 -sg2425 -(lp2438 -sg2427 -I01 -sg2428 -VThe index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal. -p2439 -ssVhost-short-name -p2440 -(dp2441 -g2422 -Vstring -p2442 -sg2424 -I00 -sg2425 -(lp2443 -g40 -asg2427 -I00 -sg2428 -VShort name describing the host crystal type (e.g. fcc, bcc, diamond). -p2444 -ssVhost-a -p2445 -(dp2446 -g2422 -Vfloat -p2447 -sg2424 -I01 -sg2425 -(lp2448 -sg2427 -I01 -sg2428 -VThe average length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2449 -ssVhost-b -p2450 -(dp2451 -g2422 -Vfloat -p2452 -sg2424 -I01 -sg2425 -(lp2453 -sg2427 -I01 -sg2428 -VThe average length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2454 -ssVhost-c -p2455 -(dp2456 -g2422 -Vfloat -p2457 -sg2424 -I01 -sg2425 -(lp2458 -sg2427 -I01 -sg2428 -VThe average length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2459 -ssVhost-alpha -p2460 -(dp2461 -g2422 -Vfloat -p2462 -sg2424 -I01 -sg2425 -(lp2463 -sg2427 -I01 -sg2428 -VThe average angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2464 -ssVhost-beta -p2465 -(dp2466 -g2422 -Vfloat -p2467 -sg2424 -I01 -sg2425 -(lp2468 -sg2427 -I01 -sg2428 -VThe average angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2469 -ssVhost-gamma -p2470 -(dp2471 -g2422 -Vfloat -p2472 -sg2424 -I01 -sg2425 -(lp2473 -sg2427 -I01 -sg2428 -VThe average angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2474 -ssVhost-space-group -p2475 -(dp2476 -g2422 -Vstring -p2477 -sg2424 -I00 -sg2425 -(lp2478 -sg2427 -I01 -sg2428 -VHermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2479 -ssVhost-wyckoff-multiplicity-and-letter -p2480 -(dp2481 -g2422 -Vstring -p2482 -sg2424 -I00 -sg2425 -(lp2483 -g40 -asg2427 -I01 -sg2428 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'. -p2484 -ssVhost-wyckoff-coordinates -p2485 -(dp2486 -g2422 -Vfloat -p2487 -sg2424 -I00 -sg2425 -(lp2488 -g40 -aI3 -asg2427 -I01 -sg2428 -VCoordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'. -p2489 -ssVhost-wyckoff-species -p2490 -(dp2491 -g2422 -Vstring -p2492 -sg2424 -I00 -sg2425 -(lp2493 -g40 -asg2427 -I01 -sg2428 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'. -p2494 -ssVhost-temperature -p2495 -(dp2496 -g2422 -Vfloat -p2497 -sg2424 -I01 -sg2425 -(lp2498 -sg2427 -I01 -sg2428 -VTemperature of the host crystal. -p2499 -ssVhost-cauchy-stress -p2500 -(dp2501 -g2422 -Vfloat -p2502 -sg2424 -I01 -sg2425 -(lp2503 -I6 -asg2427 -I01 -sg2428 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2504 -ssVreservoir-short-name -p2505 -(dp2506 -g2422 -Vstring -p2507 -sg2424 -I00 -sg2425 -(lp2508 -g40 -asg2427 -I00 -sg2428 -VShort name describing the reservoir crystal type (e.g. fcc, bcc, diamond). -p2509 -ssVreservoir-a -p2510 -(dp2511 -g2422 -Vfloat -p2512 -sg2424 -I01 -sg2425 -(lp2513 -sg2427 -I01 -sg2428 -VThe average length of the reservoir crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2514 -ssVreservoir-b -p2515 -(dp2516 -g2422 -Vfloat -p2517 -sg2424 -I01 -sg2425 -(lp2518 -sg2427 -I01 -sg2428 -VThe average length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2519 -ssVreservoir-c -p2520 -(dp2521 -g2422 -Vfloat -p2522 -sg2424 -I01 -sg2425 -(lp2523 -sg2427 -I01 -sg2428 -VThe average length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2524 -ssVreservoir-alpha -p2525 -(dp2526 -g2422 -Vfloat -p2527 -sg2424 -I01 -sg2425 -(lp2528 -sg2427 -I01 -sg2428 -VThe average angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2529 -ssVreservoir-beta -p2530 -(dp2531 -g2422 -Vfloat -p2532 -sg2424 -I01 -sg2425 -(lp2533 -sg2427 -I01 -sg2428 -VThe average angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2534 -ssVreservoir-gamma -p2535 -(dp2536 -g2422 -Vfloat -p2537 -sg2424 -I01 -sg2425 -(lp2538 -sg2427 -I01 -sg2428 -VThe average angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2539 -ssVreservoir-space-group -p2540 -(dp2541 -g2422 -Vstring -p2542 -sg2424 -I00 -sg2425 -(lp2543 -sg2427 -I01 -sg2428 -VHermann-Mauguin designation for the space group associated with the symmetry of the reservoir crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2544 -ssVreservoir-wyckoff-multiplicity-and-letter -p2545 -(dp2546 -g2422 -Vstring -p2547 -sg2424 -I00 -sg2425 -(lp2548 -g40 -asg2427 -I01 -sg2428 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the reservoir lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-species'. -p2549 -ssVreservoir-wyckoff-coordinates -p2550 -(dp2551 -g2422 -Vfloat -p2552 -sg2424 -I00 -sg2425 -(lp2553 -g40 -aI3 -asg2427 -I01 -sg2428 -VCoordinates of the unique Wyckoff sites needed to generate the reservoir lattice from its fully symmetry-reduced description, given as fractions of the reservoir crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-multiplicity-and-letter' and 'reservoir-wyckoff-species'. -p2554 -ssVreservoir-wyckoff-species -p2555 -(dp2556 -g2422 -Vstring -p2557 -sg2424 -I00 -sg2425 -(lp2558 -g40 -asg2427 -I01 -sg2428 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the reservoir crystal from its fully symmetry-reduced description. By convention, we take the reservoir to be monoatomic and to be of the same species as the atom removed to introduce the monovacancy. -p2559 -ssVreservoir-temperature -p2560 -(dp2561 -g2422 -Vfloat -p2562 -sg2424 -I01 -sg2425 -(lp2563 -sg2427 -I01 -sg2428 -VTemperature of the reservoir crystal. -p2564 -ssVreservoir-cauchy-stress -p2565 -(dp2566 -g2422 -Vfloat -p2567 -sg2424 -I01 -sg2425 -(lp2568 -I6 -asg2427 -I01 -sg2428 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the reservoir crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2569 -sssVtag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt -p2570 -(dp2571 -Vproperty-id -p2572 -Vtag:staff@noreply.openkim.org,2015-09-16:property/monovacancy-neutral-migration-energy-crystal-npt -p2573 -sVproperty-title -p2574 -VMigration energy of neutral monovacancy at zero temperature and given stress state -p2575 -sVproperty-description -p2576 -VThe energy barrier that must be overcome to transition (at zero temperature and a given stress state) from the initial configuration, a relaxed infinite host crystal lattice with a neutral monovacancy (associated with a missing atom of type 'host-missing-atom-start'), to the final relaxed configuration, where the monovacancy has moved to one of the nearest neighbor lattice sites (which is originally occupied by an atom of type 'host-missing-atom-end'). -p2577 -sVvacancy-migration-energy -p2578 -(dp2579 -Vtype -p2580 -Vfloat -p2581 -sVhas-unit -p2582 -I01 -sVextent -p2583 -(lp2584 -sVrequired -p2585 -I01 -sVdescription -p2586 -VThe energy barrier that must be overcome to transition (at zero temperature and a given stress state) from the initial configuration, a relaxed infinite host crystal lattice with a neutral monovacancy (associated with a missing atom of type 'host-missing-atom-start'), to the final relaxed configuration, where the monovacancy has moved to one of the nearest neighbor lattice sites (which is originally occupied by an atom of type 'host-missing-atom-end'). -p2587 -ssVhost-cauchy-stress -p2588 -(dp2589 -g2580 -Vfloat -p2590 -sg2582 -I01 -sg2583 -(lp2591 -I6 -asg2585 -I01 -sg2586 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2592 -ssVhost-missing-atom-start -p2593 -(dp2594 -g2580 -Vint -p2595 -sg2582 -I00 -sg2583 -(lp2596 -sg2585 -I01 -sg2586 -VThe index of the Wyckoff site corresponding to the initially missing atom. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal. -p2597 -ssVhost-missing-atom-end -p2598 -(dp2599 -g2580 -Vint -p2600 -sg2582 -I00 -sg2583 -(lp2601 -sg2585 -I01 -sg2586 -VThe index of the Wyckoff site corresponding to the missing atom after vacany migration. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal. -p2602 -ssVhost-short-name -p2603 -(dp2604 -g2580 -Vstring -p2605 -sg2582 -I00 -sg2583 -(lp2606 -g40 -asg2585 -I00 -sg2586 -VShort name describing the host crystal type (e.g. fcc, bcc, diamond). -p2607 -ssVhost-a -p2608 -(dp2609 -g2580 -Vfloat -p2610 -sg2582 -I01 -sg2583 -(lp2611 -sg2585 -I01 -sg2586 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2612 -ssVhost-b -p2613 -(dp2614 -g2580 -Vfloat -p2615 -sg2582 -I01 -sg2583 -(lp2616 -sg2585 -I01 -sg2586 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2617 -ssVhost-c -p2618 -(dp2619 -g2580 -Vfloat -p2620 -sg2582 -I01 -sg2583 -(lp2621 -sg2585 -I01 -sg2586 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2622 -ssVhost-alpha -p2623 -(dp2624 -g2580 -Vfloat -p2625 -sg2582 -I01 -sg2583 -(lp2626 -sg2585 -I01 -sg2586 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2627 -ssVhost-beta -p2628 -(dp2629 -g2580 -Vfloat -p2630 -sg2582 -I01 -sg2583 -(lp2631 -sg2585 -I01 -sg2586 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2632 -ssVhost-gamma -p2633 -(dp2634 -g2580 -Vfloat -p2635 -sg2582 -I01 -sg2583 -(lp2636 -sg2585 -I01 -sg2586 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2637 -ssVhost-space-group -p2638 -(dp2639 -g2580 -Vstring -p2640 -sg2582 -I00 -sg2583 -(lp2641 -sg2585 -I01 -sg2586 -VHermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2642 -ssVhost-wyckoff-multiplicity-and-letter -p2643 -(dp2644 -g2580 -Vstring -p2645 -sg2582 -I00 -sg2583 -(lp2646 -g40 -asg2585 -I01 -sg2586 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'. -p2647 -ssVhost-wyckoff-coordinates -p2648 -(dp2649 -g2580 -Vfloat -p2650 -sg2582 -I00 -sg2583 -(lp2651 -g40 -aI3 -asg2585 -I01 -sg2586 -VCoordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'. -p2652 -ssVhost-wyckoff-species -p2653 -(dp2654 -g2580 -Vstring -p2655 -sg2582 -I00 -sg2583 -(lp2656 -g40 -asg2585 -I01 -sg2586 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'. -p2657 -sssVtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt -p2658 -(dp2659 -Vproperty-id -p2660 -Vtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxation-volume-crystal-npt -p2661 -sVproperty-title -p2662 -VVolume change from relaxation of neighboring atoms around a neutral vacant atom site in a crystal at zero temperature and a given stress state -p2663 -sVproperty-description -p2664 -VVolume change from relaxation of neighboring atoms around a neutral vacant atom site at a given stress state in a (possibly multispecies) infinite host crystal lattice at zero temperature. -p2665 -sVrelaxation-volume -p2666 -(dp2667 -Vtype -p2668 -Vfloat -p2669 -sVhas-unit -p2670 -I01 -sVextent -p2671 -(lp2672 -sVrequired -p2673 -I01 -sVdescription -p2674 -VThe change in volume associated with the contraction around a vacant atom site in an infinitely large crystal due to the relaxation of neighboring atoms. -p2675 -ssVhost-cauchy-stress -p2676 -(dp2677 -g2668 -Vfloat -p2678 -sg2670 -I01 -sg2671 -(lp2679 -I6 -asg2673 -I01 -sg2674 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2680 -ssVhost-removed-atom -p2681 -(dp2682 -g2668 -Vint -p2683 -sg2670 -I00 -sg2671 -(lp2684 -sg2673 -I01 -sg2674 -VThe index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal. -p2685 -ssVhost-short-name -p2686 -(dp2687 -g2668 -Vstring -p2688 -sg2670 -I00 -sg2671 -(lp2689 -g40 -asg2673 -I00 -sg2674 -VShort name describing the host crystal type (e.g. fcc, bcc, diamond). -p2690 -ssVhost-a -p2691 -(dp2692 -g2668 -Vfloat -p2693 -sg2670 -I01 -sg2671 -(lp2694 -sg2673 -I01 -sg2674 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2695 -ssVhost-b -p2696 -(dp2697 -g2668 -Vfloat -p2698 -sg2670 -I01 -sg2671 -(lp2699 -sg2673 -I01 -sg2674 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2700 -ssVhost-c -p2701 -(dp2702 -g2668 -Vfloat -p2703 -sg2670 -I01 -sg2671 -(lp2704 -sg2673 -I01 -sg2674 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2705 -ssVhost-alpha -p2706 -(dp2707 -g2668 -Vfloat -p2708 -sg2670 -I01 -sg2671 -(lp2709 -sg2673 -I01 -sg2674 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2710 -ssVhost-beta -p2711 -(dp2712 -g2668 -Vfloat -p2713 -sg2670 -I01 -sg2671 -(lp2714 -sg2673 -I01 -sg2674 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2715 -ssVhost-gamma -p2716 -(dp2717 -g2668 -Vfloat -p2718 -sg2670 -I01 -sg2671 -(lp2719 -sg2673 -I01 -sg2674 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2720 -ssVhost-space-group -p2721 -(dp2722 -g2668 -Vstring -p2723 -sg2670 -I00 -sg2671 -(lp2724 -sg2673 -I01 -sg2674 -VHermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2725 -ssVhost-wyckoff-multiplicity-and-letter -p2726 -(dp2727 -g2668 -Vstring -p2728 -sg2670 -I00 -sg2671 -(lp2729 -g40 -asg2673 -I01 -sg2674 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'. -p2730 -ssVhost-wyckoff-coordinates -p2731 -(dp2732 -g2668 -Vfloat -p2733 -sg2670 -I00 -sg2671 -(lp2734 -g40 -aI3 -asg2673 -I01 -sg2674 -VCoordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'. -p2735 -ssVhost-wyckoff-species -p2736 -(dp2737 -g2668 -Vstring -p2738 -sg2670 -I00 -sg2671 -(lp2739 -g40 -asg2673 -I01 -sg2674 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'. -p2740 -sssVtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt -p2741 -(dp2742 -Vproperty-id -p2743 -Vtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-relaxed-formation-potential-energy-crystal-npt -p2744 -sVproperty-title -p2745 -VRelaxed formation potential energy of a neutral monovacancy in a crystal at zero temperature and a given stress state -p2746 -sVproperty-description -p2747 -VRelaxed potential energy of formation of a neutral monovacancy in a (possibly multispecies) infinite host crystal lattice at zero temperature relative to a given infinite monoatomic reference lattice ('reservoir') at zero temperature. -p2748 -sVrelaxed-formation-potential-energy -p2749 -(dp2750 -Vtype -p2751 -Vfloat -p2752 -sVhas-unit -p2753 -I01 -sVextent -p2754 -(lp2755 -sVrequired -p2756 -I01 -sVdescription -p2757 -VThe potential energy of formation associated with extracting the 'host-removed-atom' from the unrelaxed, infinite host crystal at zero temperature, statically relaxing the host crystal, and adding this atom to the reservoir crystal at zero temperature. -p2758 -ssVreservoir-cohesive-potential-energy -p2759 -(dp2760 -g2751 -Vfloat -p2761 -sg2753 -I01 -sg2754 -(lp2762 -sg2756 -I00 -sg2757 -VThe cohesive potential energy (negative of the potential energy per atom) of the reservoir crystal. -p2763 -ssVhost-cauchy-stress -p2764 -(dp2765 -g2751 -Vfloat -p2766 -sg2753 -I01 -sg2754 -(lp2767 -I6 -asg2756 -I01 -sg2757 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2768 -ssVhost-removed-atom -p2769 -(dp2770 -g2751 -Vint -p2771 -sg2753 -I00 -sg2754 -(lp2772 -sg2756 -I01 -sg2757 -VThe index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal. -p2773 -ssVhost-short-name -p2774 -(dp2775 -g2751 -Vstring -p2776 -sg2753 -I00 -sg2754 -(lp2777 -g40 -asg2756 -I00 -sg2757 -VShort name describing the host crystal type (e.g. fcc, bcc, diamond). -p2778 -ssVhost-a -p2779 -(dp2780 -g2751 -Vfloat -p2781 -sg2753 -I01 -sg2754 -(lp2782 -sg2756 -I01 -sg2757 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2783 -ssVhost-b -p2784 -(dp2785 -g2751 -Vfloat -p2786 -sg2753 -I01 -sg2754 -(lp2787 -sg2756 -I01 -sg2757 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2788 -ssVhost-c -p2789 -(dp2790 -g2751 -Vfloat -p2791 -sg2753 -I01 -sg2754 -(lp2792 -sg2756 -I01 -sg2757 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2793 -ssVhost-alpha -p2794 -(dp2795 -g2751 -Vfloat -p2796 -sg2753 -I01 -sg2754 -(lp2797 -sg2756 -I01 -sg2757 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2798 -ssVhost-beta -p2799 -(dp2800 -g2751 -Vfloat -p2801 -sg2753 -I01 -sg2754 -(lp2802 -sg2756 -I01 -sg2757 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2803 -ssVhost-gamma -p2804 -(dp2805 -g2751 -Vfloat -p2806 -sg2753 -I01 -sg2754 -(lp2807 -sg2756 -I01 -sg2757 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2808 -ssVhost-space-group -p2809 -(dp2810 -g2751 -Vstring -p2811 -sg2753 -I00 -sg2754 -(lp2812 -sg2756 -I01 -sg2757 -VHermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2813 -ssVhost-wyckoff-multiplicity-and-letter -p2814 -(dp2815 -g2751 -Vstring -p2816 -sg2753 -I00 -sg2754 -(lp2817 -g40 -asg2756 -I01 -sg2757 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'. -p2818 -ssVhost-wyckoff-coordinates -p2819 -(dp2820 -g2751 -Vfloat -p2821 -sg2753 -I00 -sg2754 -(lp2822 -g40 -aI3 -asg2756 -I01 -sg2757 -VCoordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'. -p2823 -ssVhost-wyckoff-species -p2824 -(dp2825 -g2751 -Vstring -p2826 -sg2753 -I00 -sg2754 -(lp2827 -g40 -asg2756 -I01 -sg2757 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'. -p2828 -ssVreservoir-short-name -p2829 -(dp2830 -g2751 -Vstring -p2831 -sg2753 -I00 -sg2754 -(lp2832 -g40 -asg2756 -I00 -sg2757 -VShort name describing the reservoir crystal type (e.g. fcc, bcc, diamond). -p2833 -ssVreservoir-a -p2834 -(dp2835 -g2751 -Vfloat -p2836 -sg2753 -I01 -sg2754 -(lp2837 -sg2756 -I01 -sg2757 -VThe length of the reservoir crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2838 -ssVreservoir-b -p2839 -(dp2840 -g2751 -Vfloat -p2841 -sg2753 -I01 -sg2754 -(lp2842 -sg2756 -I01 -sg2757 -VThe length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2843 -ssVreservoir-c -p2844 -(dp2845 -g2751 -Vfloat -p2846 -sg2753 -I01 -sg2754 -(lp2847 -sg2756 -I01 -sg2757 -VThe length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2848 -ssVreservoir-alpha -p2849 -(dp2850 -g2751 -Vfloat -p2851 -sg2753 -I01 -sg2754 -(lp2852 -sg2756 -I01 -sg2757 -VThe angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2853 -ssVreservoir-beta -p2854 -(dp2855 -g2751 -Vfloat -p2856 -sg2753 -I01 -sg2754 -(lp2857 -sg2756 -I01 -sg2757 -VThe angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2858 -ssVreservoir-gamma -p2859 -(dp2860 -g2751 -Vfloat -p2861 -sg2753 -I01 -sg2754 -(lp2862 -sg2756 -I01 -sg2757 -VThe angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2863 -ssVreservoir-space-group -p2864 -(dp2865 -g2751 -Vstring -p2866 -sg2753 -I00 -sg2754 -(lp2867 -sg2756 -I01 -sg2757 -VHermann-Mauguin designation for the space group associated with the symmetry of the reservoir crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2868 -ssVreservoir-wyckoff-multiplicity-and-letter -p2869 -(dp2870 -g2751 -Vstring -p2871 -sg2753 -I00 -sg2754 -(lp2872 -g40 -asg2756 -I01 -sg2757 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the reservoir lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-species'. -p2873 -ssVreservoir-wyckoff-coordinates -p2874 -(dp2875 -g2751 -Vfloat -p2876 -sg2753 -I00 -sg2754 -(lp2877 -g40 -aI3 -asg2756 -I01 -sg2757 -VCoordinates of the unique Wyckoff sites needed to generate the reservoir lattice from its fully symmetry-reduced description, given as fractions of the reservoir crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-multiplicity-and-letter' and 'reservoir-wyckoff-species'. -p2878 -ssVreservoir-wyckoff-species -p2879 -(dp2880 -g2751 -Vstring -p2881 -sg2753 -I00 -sg2754 -(lp2882 -g40 -asg2756 -I01 -sg2757 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the reservoir crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-multiplicity-and-letter'. By convention, we take the reservoir to be monoatomic and to be of the same species as the atom removed to introduce the monovacancy. -p2883 -ssVreservoir-cauchy-stress -p2884 -(dp2885 -g2751 -Vfloat -p2886 -sg2753 -I01 -sg2754 -(lp2887 -I6 -asg2756 -I01 -sg2757 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the reservoir crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2888 -sssVtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt -p2889 -(dp2890 -Vproperty-id -p2891 -Vtag:staff@noreply.openkim.org,2015-07-28:property/monovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt -p2892 -sVproperty-title -p2893 -VUnrelaxed formation potential energy of a neutral monovacancy in a crystal at zero temperature and a given stress state -p2894 -sVproperty-description -p2895 -VUnrelaxed potential energy of formation of a neutral monovacancy in a (possibly multispecies) infinite host crystal lattice at zero temperature relative to a given infinite monoatomic reference lattice ('reservoir') at zero temperature. -p2896 -sVunrelaxed-formation-potential-energy -p2897 -(dp2898 -Vtype -p2899 -Vfloat -p2900 -sVhas-unit -p2901 -I01 -sVextent -p2902 -(lp2903 -sVrequired -p2904 -I01 -sVdescription -p2905 -VThe potential energy of formation associated with extracting the 'host-removed-atom' from the unrelaxed, infinite host crystal at zero temperature, and adding it to the reservoir crystal at zero temperature. -p2906 -ssVreservoir-cohesive-potential-energy -p2907 -(dp2908 -g2899 -Vfloat -p2909 -sg2901 -I01 -sg2902 -(lp2910 -sg2904 -I00 -sg2905 -VThe cohesive potential energy (negative of the potential energy per atom) of the reservoir crystal. -p2911 -ssVhost-cauchy-stress -p2912 -(dp2913 -g2899 -Vfloat -p2914 -sg2901 -I01 -sg2902 -(lp2915 -I6 -asg2904 -I01 -sg2905 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the host crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p2916 -ssVhost-removed-atom -p2917 -(dp2918 -g2899 -Vint -p2919 -sg2901 -I00 -sg2902 -(lp2920 -sg2904 -I01 -sg2905 -VThe index of the Wyckoff site corresponding to the atom being removed from the host lattice. This value refers to the ordering in 'host-wyckoff-multiplicity-and-letter' and ranges from one to the number of unique Wyckoff sites in the host crystal. The species of the atom being removed should match the species of the (monoatomic) reservoir crystal. -p2921 -ssVhost-short-name -p2922 -(dp2923 -g2899 -Vstring -p2924 -sg2901 -I00 -sg2902 -(lp2925 -g40 -asg2904 -I00 -sg2905 -VShort name describing the host crystal type (e.g. fcc, bcc, diamond). -p2926 -ssVhost-a -p2927 -(dp2928 -g2899 -Vfloat -p2929 -sg2901 -I01 -sg2902 -(lp2930 -sg2904 -I01 -sg2905 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2931 -ssVhost-b -p2932 -(dp2933 -g2899 -Vfloat -p2934 -sg2901 -I01 -sg2902 -(lp2935 -sg2904 -I01 -sg2905 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2936 -ssVhost-c -p2937 -(dp2938 -g2899 -Vfloat -p2939 -sg2901 -I01 -sg2902 -(lp2940 -sg2904 -I01 -sg2905 -VThe length of the host crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'host-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2941 -ssVhost-alpha -p2942 -(dp2943 -g2899 -Vfloat -p2944 -sg2901 -I01 -sg2902 -(lp2945 -sg2904 -I01 -sg2905 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2946 -ssVhost-beta -p2947 -(dp2948 -g2899 -Vfloat -p2949 -sg2901 -I01 -sg2902 -(lp2950 -sg2904 -I01 -sg2905 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2951 -ssVhost-gamma -p2952 -(dp2953 -g2899 -Vfloat -p2954 -sg2901 -I01 -sg2902 -(lp2955 -sg2904 -I01 -sg2905 -VThe angle between the host crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p2956 -ssVhost-space-group -p2957 -(dp2958 -g2899 -Vstring -p2959 -sg2901 -I00 -sg2902 -(lp2960 -sg2904 -I01 -sg2905 -VHermann-Mauguin designation for the space group associated with the symmetry of the host crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p2961 -ssVhost-wyckoff-multiplicity-and-letter -p2962 -(dp2963 -g2899 -Vstring -p2964 -sg2901 -I00 -sg2902 -(lp2965 -g40 -asg2904 -I01 -sg2905 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the host lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-coordinates' and 'host-wyckoff-species'. -p2966 -ssVhost-wyckoff-coordinates -p2967 -(dp2968 -g2899 -Vfloat -p2969 -sg2901 -I00 -sg2902 -(lp2970 -g40 -aI3 -asg2904 -I01 -sg2905 -VCoordinates of the unique Wyckoff sites needed to generate the host lattice from its fully symmetry-reduced description, given as fractions of the host crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'host-wyckoff-multiplicity-and-letter' and 'host-wyckoff-species'. -p2971 -ssVhost-wyckoff-species -p2972 -(dp2973 -g2899 -Vstring -p2974 -sg2901 -I00 -sg2902 -(lp2975 -g40 -asg2904 -I01 -sg2905 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the host crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'host-wyckoff-coordinates' and 'host-wyckoff-multiplicity-and-letter'. -p2976 -ssVreservoir-short-name -p2977 -(dp2978 -g2899 -Vstring -p2979 -sg2901 -I00 -sg2902 -(lp2980 -g40 -asg2904 -I00 -sg2905 -VShort name describing the reservoir crystal type (e.g. fcc, bcc, diamond). -p2981 -ssVreservoir-a -p2982 -(dp2983 -g2899 -Vfloat -p2984 -sg2901 -I01 -sg2902 -(lp2985 -sg2904 -I01 -sg2905 -VThe length of the reservoir crystal unit cell vector . The associated direction must correspond to the first component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2986 -ssVreservoir-b -p2987 -(dp2988 -g2899 -Vfloat -p2989 -sg2901 -I01 -sg2902 -(lp2990 -sg2904 -I01 -sg2905 -VThe length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2991 -ssVreservoir-c -p2992 -(dp2993 -g2899 -Vfloat -p2994 -sg2901 -I01 -sg2902 -(lp2995 -sg2904 -I01 -sg2905 -VThe length of the reservoir crystal unit cell vector . The associated direction must correspond to the second component of the entries of 'reservoir-wyckoff-coordinates'. The triad (,,) must form a right-handed system. -p2996 -ssVreservoir-alpha -p2997 -(dp2998 -g2899 -Vfloat -p2999 -sg2901 -I01 -sg2902 -(lp3000 -sg2904 -I01 -sg2905 -VThe angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p3001 -ssVreservoir-beta -p3002 -(dp3003 -g2899 -Vfloat -p3004 -sg2901 -I01 -sg2902 -(lp3005 -sg2904 -I01 -sg2905 -VThe angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p3006 -ssVreservoir-gamma -p3007 -(dp3008 -g2899 -Vfloat -p3009 -sg2901 -I01 -sg2902 -(lp3010 -sg2904 -I01 -sg2905 -VThe angle between the reservoir crystal unit cell vectors and . Must be strictly greater than zero and strictly less than 90 degrees. -p3011 -ssVreservoir-space-group -p3012 -(dp3013 -g2899 -Vstring -p3014 -sg2901 -I00 -sg2902 -(lp3015 -sg2904 -I01 -sg2905 -VHermann-Mauguin designation for the space group associated with the symmetry of the reservoir crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3016 -ssVreservoir-wyckoff-multiplicity-and-letter -p3017 -(dp3018 -g2899 -Vstring -p3019 -sg2901 -I00 -sg2902 -(lp3020 -g40 -asg2904 -I01 -sg2905 -VMultiplicity and standard letter of the unique Wyckoff sites (e.g. 4a, 2b) needed to generate the reservoir lattice from its fully symmetry-reduced description. The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-species'. -p3021 -ssVreservoir-wyckoff-coordinates -p3022 -(dp3023 -g2899 -Vfloat -p3024 -sg2901 -I00 -sg2902 -(lp3025 -g40 -aI3 -asg2904 -I01 -sg2905 -VCoordinates of the unique Wyckoff sites needed to generate the reservoir lattice from its fully symmetry-reduced description, given as fractions of the reservoir crystal lattice vectors. The origin used to specify the Wyckoff coordinates is assumed to correspond to the standard/default setting (see http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-def-choice). The order of elements in this array must correspond to the order of the entries listed in 'reservoir-wyckoff-multiplicity-and-letter' and 'reservoir-wyckoff-species'. -p3026 -ssVreservoir-wyckoff-species -p3027 -(dp3028 -g2899 -Vstring -p3029 -sg2901 -I00 -sg2902 -(lp3030 -g40 -asg2904 -I01 -sg2905 -VThe element symbol of the atomic species of the unique Wyckoff sites used to generate the reservoir crystal from its fully symmetry-reduced description. The order of the entries must correspond to the order of the entries in 'reservoir-wyckoff-coordinates' and 'reservoir-wyckoff-multiplicity-and-letter'. By convention, we take the reservoir to be monoatomic and to be of the same species as the atom removed to introduce the monovacancy. -p3031 -ssVreservoir-cauchy-stress -p3032 -(dp3033 -g2899 -Vfloat -p3034 -sg2901 -I01 -sg2902 -(lp3035 -I6 -asg2904 -I01 -sg2905 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell of the reservoir crystal. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p3036 -sssVtag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt -p3037 -(dp3038 -Vproperty-id -p3039 -Vtag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-dos-cubic-crystal-npt -p3040 -sVproperty-title -p3041 -VPhonon dispersion density of states for a cubic crystal -p3042 -sVproperty-description -p3043 -VDensity of states of the phonon dispersion energies of a cubic crystal at given temperature and pressure. -p3044 -sVshort-name -p3045 -(dp3046 -Vtype -p3047 -Vstring -p3048 -sVhas-unit -p3049 -I00 -sVextent -p3050 -(lp3051 -g40 -asVrequired -p3052 -I00 -sVdescription -p3053 -VShort name defining the cubic crystal type. -p3054 -ssVspecies -p3055 -(dp3056 -g3047 -Vstring -p3057 -sg3049 -I00 -sg3050 -(lp3058 -g40 -asg3052 -I01 -sg3053 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3059 -ssg49 -(dp3060 -g3047 -Vfloat -p3061 -sg3049 -I01 -sg3050 -(lp3062 -sg3052 -I01 -sg3053 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p3063 -ssVbasis-atom-coordinates -p3064 -(dp3065 -g3047 -Vfloat -p3066 -sg3049 -I00 -sg3050 -(lp3067 -g40 -aI3 -asg3052 -I01 -sg3053 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3068 -ssVspace-group -p3069 -(dp3070 -g3047 -Vstring -p3071 -sg3049 -I00 -sg3050 -(lp3072 -sg3052 -I00 -sg3053 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3073 -ssVwyckoff-species -p3074 -(dp3075 -g3047 -Vstring -p3076 -sg3049 -I00 -sg3050 -(lp3077 -g40 -asg3052 -I00 -sg3053 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3078 -ssVwyckoff-multiplicity-and-letter -p3079 -(dp3080 -g3047 -Vstring -p3081 -sg3049 -I00 -sg3050 -(lp3082 -g40 -asg3052 -I00 -sg3053 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3083 -ssVwyckoff-coordinates -p3084 -(dp3085 -g3047 -Vfloat -p3086 -sg3049 -I00 -sg3050 -(lp3087 -g40 -aI3 -asg3052 -I00 -sg3053 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3088 -ssVtemperature -p3089 -(dp3090 -g3047 -Vfloat -p3091 -sg3049 -I01 -sg3050 -(lp3092 -sg3052 -I01 -sg3053 -VTemperature of the crystal. -p3093 -ssVcauchy-stress -p3094 -(dp3095 -g3047 -Vfloat -p3096 -sg3049 -I01 -sg3050 -(lp3097 -I6 -asg3052 -I01 -sg3053 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p3098 -ssVenergy -p3099 -(dp3100 -g3047 -Vfloat -p3101 -sg3049 -I01 -sg3050 -(lp3102 -g40 -asg3052 -I01 -sg3053 -VEnergy of the wave, the dependent variable. Must be same length as density-of-states. -p3103 -ssVdensity-of-states -p3104 -(dp3105 -g3047 -Vfloat -p3106 -sg3049 -I00 -sg3050 -(lp3107 -g40 -asg3052 -I01 -sg3053 -VDensity of states at a particular energy, the number of phonon modes at a particular wavelength. Same length as 'energy'. -p3108 -sssVtag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt -p3109 -(dp3110 -Vproperty-id -p3111 -Vtag:staff@noreply.openkim.org,2014-05-21:property/phonon-dispersion-relation-cubic-crystal-npt -p3112 -sVproperty-title -p3113 -VSingle wave direction phonon dispersion relation for a cubic crystal -p3114 -sVproperty-description -p3115 -VPhonon dispersion relation for a cubic crystal at a given temperature and pressure. The dispersion relation is provided for a single wave direction. It consists of multiple branches (three for a monoatomic crystal, more for crystals with more than one basis atom per unit cell). -p3116 -sVshort-name -p3117 -(dp3118 -Vtype -p3119 -Vstring -p3120 -sVhas-unit -p3121 -I00 -sVextent -p3122 -(lp3123 -g40 -asVrequired -p3124 -I00 -sVdescription -p3125 -VShort name defining the cubic crystal type. -p3126 -ssVspecies -p3127 -(dp3128 -g3119 -Vstring -p3129 -sg3121 -I00 -sg3122 -(lp3130 -g40 -asg3124 -I01 -sg3125 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3131 -ssg49 -(dp3132 -g3119 -Vfloat -p3133 -sg3121 -I01 -sg3122 -(lp3134 -sg3124 -I01 -sg3125 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p3135 -ssVbasis-atom-coordinates -p3136 -(dp3137 -g3119 -Vfloat -p3138 -sg3121 -I00 -sg3122 -(lp3139 -g40 -aI3 -asg3124 -I01 -sg3125 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3140 -ssVspace-group -p3141 -(dp3142 -g3119 -Vstring -p3143 -sg3121 -I00 -sg3122 -(lp3144 -sg3124 -I00 -sg3125 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3145 -ssVwyckoff-species -p3146 -(dp3147 -g3119 -Vstring -p3148 -sg3121 -I00 -sg3122 -(lp3149 -g40 -asg3124 -I00 -sg3125 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3150 -ssVwyckoff-multiplicity-and-letter -p3151 -(dp3152 -g3119 -Vstring -p3153 -sg3121 -I00 -sg3122 -(lp3154 -g40 -asg3124 -I00 -sg3125 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3155 -ssVwyckoff-coordinates -p3156 -(dp3157 -g3119 -Vfloat -p3158 -sg3121 -I00 -sg3122 -(lp3159 -g40 -aI3 -asg3124 -I00 -sg3125 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3160 -ssVtemperature -p3161 -(dp3162 -g3119 -Vfloat -p3163 -sg3121 -I01 -sg3122 -(lp3164 -sg3124 -I01 -sg3125 -VTemperature of the crystal. -p3165 -ssVcauchy-stress -p3166 -(dp3167 -g3119 -Vfloat -p3168 -sg3121 -I01 -sg3122 -(lp3169 -I6 -asg3124 -I01 -sg3125 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p3170 -ssVwave-vector-direction -p3171 -(dp3172 -g3119 -Vfloat -p3173 -sg3121 -I01 -sg3122 -(lp3174 -I3 -ag40 -asg3124 -I01 -sg3125 -VComponents of the incident wave wavevector with respect to the reciprocal lattice basis vectors. -p3175 -ssVbranch-label -p3176 -(dp3177 -g3119 -Vstring -p3178 -sg3121 -I00 -sg3122 -(lp3179 -g40 -asg3124 -I00 -sg3125 -VLabel naming each branch, e.g. indicating whether it is longitudinal acoustic (LA), transverse acoustic (TA), longitudinal optical (LO), transverse optical (TO). -p3180 -ssVwave-number -p3181 -(dp3182 -g3119 -Vfloat -p3183 -sg3121 -I01 -sg3122 -(lp3184 -g40 -asg3124 -I01 -sg3125 -VThe wave numbers of each of the k-points. -p3185 -ssVresponse-frequency -p3186 -(dp3187 -g3119 -Vfloat -p3188 -sg3121 -I01 -sg3122 -(lp3189 -g40 -ag40 -asg3124 -I01 -sg3125 -VFor each branch (first index of the array), the response frequencies (second index of array) corresponding to the wave numbers in the wave-number array. -p3190 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal -p3191 -(dp3192 -Vproperty-id -p3193 -Vtag:staff@noreply.openkim.org,2015-05-26:property/shear-stress-path-cubic-crystal -p3194 -sVproperty-title -p3195 -VShear strain and stability versus first Piola-Kirchhoff shear stress path of a cubic crystal -p3196 -sVproperty-description -p3197 -VShear strain and stability versus first Piola-Kirchhoff (nominal) shear stress path under stress control boundary conditions for a cubic crystal at zero absolute temperature. The applied nominal shear stress is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. -p3198 -sVshort-name -p3199 -(dp3200 -Vtype -p3201 -Vstring -p3202 -sVhas-unit -p3203 -I00 -sVextent -p3204 -(lp3205 -g40 -asVrequired -p3206 -I00 -sVdescription -p3207 -VShort name defining the cubic crystal type. -p3208 -ssVspecies -p3209 -(dp3210 -g3201 -Vstring -p3211 -sg3203 -I00 -sg3204 -(lp3212 -g40 -asg3206 -I01 -sg3207 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3213 -ssg49 -(dp3214 -g3201 -Vfloat -p3215 -sg3203 -I01 -sg3204 -(lp3216 -sg3206 -I01 -sg3207 -VEquilibrium conventional lattice constant of the reference (unsheared) cubic crystal at zero temperature under stress-free boundary conditions. -p3217 -ssVbasis-atom-coordinates -p3218 -(dp3219 -g3201 -Vfloat -p3220 -sg3203 -I00 -sg3204 -(lp3221 -g40 -aI3 -asg3206 -I01 -sg3207 -VFractional coordinates of the basis atoms in the conventional unit cell for the reference stress-free crystal. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3222 -ssVspace-group -p3223 -(dp3224 -g3201 -Vstring -p3225 -sg3203 -I00 -sg3204 -(lp3226 -sg3206 -I00 -sg3207 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3227 -ssVwyckoff-species -p3228 -(dp3229 -g3201 -Vstring -p3230 -sg3203 -I00 -sg3204 -(lp3231 -g40 -asg3206 -I00 -sg3207 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3232 -ssVwyckoff-multiplicity-and-letter -p3233 -(dp3234 -g3201 -Vstring -p3235 -sg3203 -I00 -sg3204 -(lp3236 -g40 -asg3206 -I00 -sg3207 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3237 -ssVwyckoff-coordinates -p3238 -(dp3239 -g3201 -Vfloat -p3240 -sg3203 -I00 -sg3204 -(lp3241 -g40 -aI3 -asg3206 -I00 -sg3207 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3242 -ssVshear-direction -p3243 -(dp3244 -g3201 -Vint -p3245 -sg3203 -I00 -sg3204 -(lp3246 -I3 -asg3206 -I01 -sg3207 -VThe shear stress direction given as a crystallographic direction consisting of three integers relative to the conventional crystal coordinate system. -p3247 -ssVshear-plane-normal -p3248 -(dp3249 -g3201 -Vint -p3250 -sg3203 -I00 -sg3204 -(lp3251 -I3 -asg3206 -I01 -sg3207 -VThe shear stress plane normal given as a vector of Miller indices (three integers) relative to the conventional crystal coordinate system. -p3252 -ssVnominal-shear-stress -p3253 -(dp3254 -g3201 -Vfloat -p3255 -sg3203 -I01 -sg3204 -(lp3256 -g40 -asg3206 -I01 -sg3207 -VA vector of nominal shear stress, tau, values, defined such that the first Piola-Kirchhoff stress tensor is P = tau * (s \u005cotimes n + n \u005cotimes s), where s is the unit vector associated with 'shear-stress-direction' and n is the unit vector associated with 'shear-plane-normal'. -p3257 -ssVnominal-shear-strain -p3258 -(dp3259 -g3201 -Vfloat -p3260 -sg3203 -I00 -sg3204 -(lp3261 -g40 -asg3206 -I01 -sg3207 -VA vector of nominal shear strain, gamma, values work conjugate to the nominal shear stress, and defined as gamma = tr(P^T(F-I))/tau, where P^T is the transpose of the first Piola-Kirchhoff stress, tr() is the trace, and I is the 3D identity tensor. -p3262 -ssVcauchy-born-stability -p3263 -(dp3264 -g3201 -Vbool -p3265 -sg3203 -I00 -sg3204 -(lp3266 -g40 -asg3206 -I01 -sg3207 -VA vector of boolean values indicating the Cauchy-Born stability, with respect to the conventional unit cell, of the stressed crystal. Rigid rotation is not considered an instability in this definition. -p3267 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt -p3268 -(dp3269 -Vproperty-id -p3270 -Vtag:staff@noreply.openkim.org,2015-05-26:property/stacking-fault-relaxed-energy-curve-fcc-crystal-npt -p3271 -sVproperty-title -p3272 -VRelaxed stacking energy per unit area curve for layer-by-layer rigid slip on {111}<112> in a monoatomic fcc crystal at zero temperature and a specified pressure -p3273 -sVproperty-description -p3274 -VThe energy-per-area versus slip curve associated with a deformation twinning process in which a sequence of faults is generated by sequentially rigidly displacing one part of a monoatomic fcc crystal relative to another on a {111} plane along a <112> direction at zero temperature and a specified pressure. The following sequence of structures is traversed by the curve: ideal crystal -> intrinsic stacking fault -> two-layer twin nucleus. Each energy is computed after performing relaxation of the atomic coordinates in the direction perpendicular to the fault plane. -p3275 -sg49 -(dp3276 -Vtype -p3277 -Vfloat -p3278 -sVhas-unit -p3279 -I01 -sVextent -p3280 -(lp3281 -sVrequired -p3282 -I01 -sVdescription -p3283 -VZero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure. -p3284 -ssVspecies -p3285 -(dp3286 -g3277 -Vstring -p3287 -sg3279 -I00 -sg3280 -(lp3288 -g40 -asg3282 -I01 -sg3283 -VThe element symbol of the fcc crystal material. This should contain only a single entry. -p3289 -ssVcauchy-stress -p3290 -(dp3291 -g3277 -Vfloat -p3292 -sg3279 -I01 -sg3280 -(lp3293 -I6 -asg3282 -I01 -sg3283 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p3294 -ssVfault-plane-shift-fraction -p3295 -(dp3296 -g3277 -Vfloat -p3297 -sg3279 -I00 -sg3280 -(lp3298 -g40 -asg3282 -I01 -sg3283 -VA list of relative displacements of the two crystal parts used to compute the stacking energy curve. Each element corresponds to the relative displacement of the two crystal parts as a fraction of the 1/6<112> partial dislocation Burgers vector. The range 0.0 to 1.0 corresponds to the path from the ideal crystal to the intrinstic stacking, and 1.0 to 2.0 corresponds to slipping one layer above from the intrinsic stacking fault to a two-layer twin nucleus. -p3299 -ssVfault-plane-energy -p3300 -(dp3301 -g3277 -Vfloat -p3302 -sg3279 -I01 -sg3280 -(lp3303 -g40 -asg3282 -I01 -sg3283 -VThe relaxed excess energy-per-area of the fault plane for a given relative displacement of the two crystal parts. The order of the energies must match the ordering in 'fault-plane-shift-fraction'. -p3304 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt -p3305 -(dp3306 -Vproperty-id -p3307 -Vtag:staff@noreply.openkim.org,2015-05-26:property/structure-2d-hexagonal-crystal-npt -p3308 -sVproperty-title -p3309 -VEquilibrium two-dimensional layer hexagonal crystal structure at a given temperature and stress state -p3310 -sVproperty-description -p3311 -VConventional lattice parameter and basis atoms of a two-dimensional hexagonal crystalline layer at a given temperature and stress state. -p3312 -sVshort-name -p3313 -(dp3314 -Vtype -p3315 -Vstring -p3316 -sVhas-unit -p3317 -I00 -sVextent -p3318 -(lp3319 -g40 -asVrequired -p3320 -I00 -sVdescription -p3321 -VShort name defining the 2-d hexagonal crystal type. -p3322 -ssVspecies -p3323 -(dp3324 -g3315 -Vstring -p3325 -sg3317 -I00 -sg3318 -(lp3326 -g40 -asg3320 -I01 -sg3321 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3327 -ssg49 -(dp3328 -g3315 -Vfloat -p3329 -sg3317 -I01 -sg3318 -(lp3330 -sg3320 -I01 -sg3321 -VThermal average length of unit cell vectors and (which are equal for this crystal structure). The two associated directions correspond to the first and second components of the entries of 'basis-atom-coordinates'. The lattice does not repeat in a third direction, but the basis vector used to define out-of-plane atomic coordinates is taken to be orthogonal to and and equal in length to them. The triad (,,) forms a right-handed system. -p3331 -ssVbasis-atom-coordinates -p3332 -(dp3333 -g3315 -Vfloat -p3334 -sg3317 -I00 -sg3318 -(lp3335 -g40 -aI3 -asg3320 -I01 -sg3321 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by and , the third basis vector, , is taken to be orthogonal to and and equal in length to them, such that the triad (,,) forms a right-handed system. If the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. The first two components of each basis atom must be between zero and one, inclusive of zero. The third component can be any real number, since it is normalized relative to an unrelated in-plane length, and may be positive or negative in order to accomodate the standard Wyckoff positions for layer groups. -p3336 -ssVlayer-group -p3337 -(dp3338 -g3315 -Vstring -p3339 -sg3317 -I00 -sg3318 -(lp3340 -sg3320 -I00 -sg3321 -VHermann-Mauguin designation for the layer group associated with the symmetry of the crystal (e.g. p6/mmm for graphene). -p3341 -ssVwyckoff-species -p3342 -(dp3343 -g3315 -Vstring -p3344 -sg3317 -I00 -sg3318 -(lp3345 -g40 -asg3320 -I00 -sg3321 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3346 -ssVwyckoff-multiplicity-and-letter -p3347 -(dp3348 -g3315 -Vstring -p3349 -sg3317 -I00 -sg3318 -(lp3350 -g40 -asg3320 -I00 -sg3321 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 2b is the only entry for graphene). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3351 -ssVwyckoff-coordinates -p3352 -(dp3353 -g3315 -Vfloat -p3354 -sg3317 -I00 -sg3318 -(lp3355 -g40 -aI3 -asg3320 -I00 -sg3321 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors and the third basis vector , defined to be perpendicular to the two lattice vectors and equal in length to , such that the triad (,,) forms a right-handed system. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3356 -ssVtemperature -p3357 -(dp3358 -g3315 -Vfloat -p3359 -sg3317 -I01 -sg3318 -(lp3360 -sg3320 -I01 -sg3321 -VTemperature of the 2-d crystal. -p3361 -ssVcauchy-in-plane-stress -p3362 -(dp3363 -g3315 -Vfloat -p3364 -sg3317 -I01 -sg3318 -(lp3365 -I3 -asg3320 -I01 -sg3321 -VThe [xx,yy,xy] (i.e. [11,22,12]) components of the Cauchy in-plane stress (force-per-unit-length) acting on the periodic cell. The orthonormal basis (, ) used to express the stress should be such that e_1 is in the direction of , and e_2 is in the direction of the vector product of and ( x ). The form must be [d d 0] to maintain the symmetry. -p3366 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt -p3367 -(dp3368 -Vproperty-id -p3369 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-cubic-crystal-npt -p3370 -sVproperty-title -p3371 -VEquilibrium cubic crystal structure at a given temperature and hydrostatic stress -p3372 -sVproperty-description -p3373 -VConventional lattice parameter and basis atom positions of a cubic crystal at a given temperature and hydrostatic pressure. -p3374 -sVshort-name -p3375 -(dp3376 -Vtype -p3377 -Vstring -p3378 -sVhas-unit -p3379 -I00 -sVextent -p3380 -(lp3381 -g40 -asVrequired -p3382 -I00 -sVdescription -p3383 -VShort name defining the cubic crystal type. -p3384 -ssVspecies -p3385 -(dp3386 -g3377 -Vstring -p3387 -sg3379 -I00 -sg3380 -(lp3388 -g40 -asg3382 -I01 -sg3383 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3389 -ssg49 -(dp3390 -g3377 -Vfloat -p3391 -sg3379 -I01 -sg3380 -(lp3392 -sg3382 -I01 -sg3383 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p3393 -ssVbasis-atom-coordinates -p3394 -(dp3395 -g3377 -Vfloat -p3396 -sg3379 -I00 -sg3380 -(lp3397 -g40 -aI3 -asg3382 -I01 -sg3383 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3398 -ssVspace-group -p3399 -(dp3400 -g3377 -Vstring -p3401 -sg3379 -I00 -sg3380 -(lp3402 -sg3382 -I00 -sg3383 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3403 -ssVwyckoff-species -p3404 -(dp3405 -g3377 -Vstring -p3406 -sg3379 -I00 -sg3380 -(lp3407 -g40 -asg3382 -I00 -sg3383 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3408 -ssVwyckoff-multiplicity-and-letter -p3409 -(dp3410 -g3377 -Vstring -p3411 -sg3379 -I00 -sg3380 -(lp3412 -g40 -asg3382 -I00 -sg3383 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3413 -ssVwyckoff-coordinates -p3414 -(dp3415 -g3377 -Vfloat -p3416 -sg3379 -I00 -sg3380 -(lp3417 -g40 -aI3 -asg3382 -I00 -sg3383 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3418 -ssVtemperature -p3419 -(dp3420 -g3377 -Vfloat -p3421 -sg3379 -I01 -sg3380 -(lp3422 -sg3382 -I01 -sg3383 -VTemperature of the crystal. -p3423 -ssVcauchy-stress -p3424 -(dp3425 -g3377 -Vfloat -p3426 -sg3379 -I01 -sg3380 -(lp3427 -I6 -asg3382 -I01 -sg3383 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p3428 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt -p3429 -(dp3430 -Vproperty-id -p3431 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-hexagonal-crystal-npt -p3432 -sVproperty-title -p3433 -VEquilibrium hexagonal crystal structure at a given temperature and stress state -p3434 -sVproperty-description -p3435 -VConventional lattice parameters of a hexagonal crystal at a given temperature and stress state. -p3436 -sVshort-name -p3437 -(dp3438 -Vtype -p3439 -Vstring -p3440 -sVhas-unit -p3441 -I00 -sVextent -p3442 -(lp3443 -g40 -asVrequired -p3444 -I00 -sVdescription -p3445 -VShort name defining the hexagonal crystal type. -p3446 -ssVspecies -p3447 -(dp3448 -g3439 -Vstring -p3449 -sg3441 -I00 -sg3442 -(lp3450 -g40 -asg3444 -I01 -sg3445 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3451 -ssg49 -(dp3452 -g3439 -Vfloat -p3453 -sg3441 -I01 -sg3442 -(lp3454 -sg3444 -I01 -sg3445 -VThe average length of unit cell vectors and . The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3455 -ssg121 -(dp3456 -g3439 -Vfloat -p3457 -sg3441 -I01 -sg3442 -(lp3458 -sg3444 -I01 -sg3445 -VThe average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3459 -ssVbasis-atom-coordinates -p3460 -(dp3461 -g3439 -Vfloat -p3462 -sg3441 -I00 -sg3442 -(lp3463 -g40 -aI3 -asg3444 -I01 -sg3445 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3464 -ssVspace-group -p3465 -(dp3466 -g3439 -Vstring -p3467 -sg3441 -I00 -sg3442 -(lp3468 -sg3444 -I00 -sg3445 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3469 -ssVwyckoff-species -p3470 -(dp3471 -g3439 -Vstring -p3472 -sg3441 -I00 -sg3442 -(lp3473 -g40 -asg3444 -I00 -sg3445 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3474 -ssVwyckoff-multiplicity-and-letter -p3475 -(dp3476 -g3439 -Vstring -p3477 -sg3441 -I00 -sg3442 -(lp3478 -g40 -asg3444 -I00 -sg3445 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3479 -ssVwyckoff-coordinates -p3480 -(dp3481 -g3439 -Vfloat -p3482 -sg3441 -I00 -sg3442 -(lp3483 -g40 -aI3 -asg3444 -I00 -sg3445 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3484 -ssVtemperature -p3485 -(dp3486 -g3439 -Vfloat -p3487 -sg3441 -I01 -sg3442 -(lp3488 -sg3444 -I01 -sg3445 -VTemperature of the crystal. -p3489 -ssVcauchy-stress -p3490 -(dp3491 -g3439 -Vfloat -p3492 -sg3441 -I01 -sg3442 -(lp3493 -I6 -asg3444 -I01 -sg3445 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_3 is in the direction of , and e_2 is in the direction of ( x ). The expected form should be [d d e 0 0 r]. -p3494 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-monoclinic-crystal-npt -p3495 -(dp3496 -Vproperty-id -p3497 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-monoclinic-crystal-npt -p3498 -sVproperty-title -p3499 -VEquilibrium monoclinic crystal structure at a given temperature and stress state -p3500 -sVproperty-description -p3501 -VConventional lattice parameters and basis atom positions of a monoclinic crystal at a given temperature and stress state. -p3502 -sVshort-name -p3503 -(dp3504 -Vtype -p3505 -Vstring -p3506 -sVhas-unit -p3507 -I00 -sVextent -p3508 -(lp3509 -g40 -asVrequired -p3510 -I00 -sVdescription -p3511 -VShort name defining the monoclinic crystal type. -p3512 -ssVspecies -p3513 -(dp3514 -g3505 -Vstring -p3515 -sg3507 -I00 -sg3508 -(lp3516 -g40 -asg3510 -I01 -sg3511 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3517 -ssg49 -(dp3518 -g3505 -Vfloat -p3519 -sg3507 -I01 -sg3508 -(lp3520 -sg3510 -I01 -sg3511 -VThe average length of unit cell vector . The associated direction must correspond to the first component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3521 -ssVb -p3522 -(dp3523 -g3505 -Vfloat -p3524 -sg3507 -I01 -sg3508 -(lp3525 -sg3510 -I01 -sg3511 -VThe average length of unit cell vector . The associated direction must correspond to the second component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3526 -ssg121 -(dp3527 -g3505 -Vfloat -p3528 -sg3507 -I01 -sg3508 -(lp3529 -sg3510 -I01 -sg3511 -VThe average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3530 -ssVbeta -p3531 -(dp3532 -g3505 -Vfloat -p3533 -sg3507 -I01 -sg3508 -(lp3534 -sg3510 -I01 -sg3511 -VThe angle between unit cell vectors and (which correspond to the first and second components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees. -p3535 -ssVbasis-atom-coordinates -p3536 -(dp3537 -g3505 -Vfloat -p3538 -sg3507 -I00 -sg3508 -(lp3539 -g40 -aI3 -asg3510 -I01 -sg3511 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3540 -ssVspace-group -p3541 -(dp3542 -g3505 -Vstring -p3543 -sg3507 -I00 -sg3508 -(lp3544 -sg3510 -I00 -sg3511 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3545 -ssVwyckoff-species -p3546 -(dp3547 -g3505 -Vstring -p3548 -sg3507 -I00 -sg3508 -(lp3549 -g40 -asg3510 -I00 -sg3511 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3550 -ssVwyckoff-multiplicity-and-letter -p3551 -(dp3552 -g3505 -Vstring -p3553 -sg3507 -I00 -sg3508 -(lp3554 -g40 -asg3510 -I00 -sg3511 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3555 -ssVwyckoff-coordinates -p3556 -(dp3557 -g3505 -Vfloat -p3558 -sg3507 -I00 -sg3508 -(lp3559 -g40 -aI3 -asg3510 -I00 -sg3511 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3560 -ssVtemperature -p3561 -(dp3562 -g3505 -Vfloat -p3563 -sg3507 -I01 -sg3508 -(lp3564 -sg3510 -I01 -sg3511 -VTemperature of the crystal. -p3565 -ssVcauchy-stress -p3566 -(dp3567 -g3505 -Vfloat -p3568 -sg3507 -I01 -sg3508 -(lp3569 -I6 -asg3510 -I01 -sg3511 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of , and e_3 is given by ( x ). The expected form should be [d e f 0 r 0]. -p3570 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-orthorhombic-crystal-npt -p3571 -(dp3572 -Vproperty-id -p3573 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-orthorhombic-crystal-npt -p3574 -sVproperty-title -p3575 -VEquilibrium orthorhombic crystal structure at a given temperature and stress state -p3576 -sVproperty-description -p3577 -VConventional lattice parameters and basis atom positions of a orthorhombic crystal at a given temperature and stress state. -p3578 -sVshort-name -p3579 -(dp3580 -Vtype -p3581 -Vstring -p3582 -sVhas-unit -p3583 -I00 -sVextent -p3584 -(lp3585 -g40 -asVrequired -p3586 -I00 -sVdescription -p3587 -VShort name defining the orthorhombic crystal type. -p3588 -ssVspecies -p3589 -(dp3590 -g3581 -Vstring -p3591 -sg3583 -I00 -sg3584 -(lp3592 -g40 -asg3586 -I01 -sg3587 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3593 -ssg49 -(dp3594 -g3581 -Vfloat -p3595 -sg3583 -I01 -sg3584 -(lp3596 -sg3586 -I01 -sg3587 -VThe average length of unit cell vector . The associated direction must correspond to the first component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3597 -ssg3522 -(dp3598 -g3581 -Vfloat -p3599 -sg3583 -I01 -sg3584 -(lp3600 -sg3586 -I01 -sg3587 -VThe average length of unit cell vector . The associated direction must correspond to the second component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3601 -ssg121 -(dp3602 -g3581 -Vfloat -p3603 -sg3583 -I01 -sg3584 -(lp3604 -sg3586 -I01 -sg3587 -VThe average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3605 -ssVbasis-atom-coordinates -p3606 -(dp3607 -g3581 -Vfloat -p3608 -sg3583 -I00 -sg3584 -(lp3609 -g40 -aI3 -asg3586 -I01 -sg3587 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3610 -ssVspace-group -p3611 -(dp3612 -g3581 -Vstring -p3613 -sg3583 -I00 -sg3584 -(lp3614 -sg3586 -I00 -sg3587 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3615 -ssVwyckoff-species -p3616 -(dp3617 -g3581 -Vstring -p3618 -sg3583 -I00 -sg3584 -(lp3619 -g40 -asg3586 -I00 -sg3587 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3620 -ssVwyckoff-multiplicity-and-letter -p3621 -(dp3622 -g3581 -Vstring -p3623 -sg3583 -I00 -sg3584 -(lp3624 -g40 -asg3586 -I00 -sg3587 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3625 -ssVwyckoff-coordinates -p3626 -(dp3627 -g3581 -Vfloat -p3628 -sg3583 -I00 -sg3584 -(lp3629 -g40 -aI3 -asg3586 -I00 -sg3587 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3630 -ssVtemperature -p3631 -(dp3632 -g3581 -Vfloat -p3633 -sg3583 -I01 -sg3584 -(lp3634 -sg3586 -I01 -sg3587 -VTemperature of the crystal. -p3635 -ssVcauchy-stress -p3636 -(dp3637 -g3581 -Vfloat -p3638 -sg3583 -I01 -sg3584 -(lp3639 -I6 -asg3586 -I01 -sg3587 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of , and e_3 is in the direction of . The expected form should be [d e f 0 0 0]. -p3640 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-rhombohedral-crystal-npt -p3641 -(dp3642 -Vproperty-id -p3643 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-rhombohedral-crystal-npt -p3644 -sVproperty-title -p3645 -VEquilibrium rhombohedral crystal structure at a given temperature and stress state -p3646 -sVproperty-description -p3647 -VConventional lattice parameters of a rhombohedral crystal at a given temperature and stress state. -p3648 -sVshort-name -p3649 -(dp3650 -Vtype -p3651 -Vstring -p3652 -sVhas-unit -p3653 -I00 -sVextent -p3654 -(lp3655 -g40 -asVrequired -p3656 -I00 -sVdescription -p3657 -VShort name defining the rhombohedral crystal type. -p3658 -ssVspecies -p3659 -(dp3660 -g3651 -Vstring -p3661 -sg3653 -I00 -sg3654 -(lp3662 -g40 -asg3656 -I01 -sg3657 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3663 -ssg49 -(dp3664 -g3651 -Vfloat -p3665 -sg3653 -I01 -sg3654 -(lp3666 -sg3656 -I01 -sg3657 -VAverage equilibrium conventional lattice constant of the rhombohedral crystal. -p3667 -ssValpha -p3668 -(dp3669 -g3651 -Vfloat -p3670 -sg3653 -I01 -sg3654 -(lp3671 -sg3656 -I01 -sg3657 -VThe interior acute angles of the unit cell. This corresponds to the angle between any pair of the lattice vectors , , and . Must be strictly greater than zero and strictly less than 90 degrees. -p3672 -ssVbasis-atom-coordinates -p3673 -(dp3674 -g3651 -Vfloat -p3675 -sg3653 -I00 -sg3654 -(lp3676 -g40 -aI3 -asg3656 -I01 -sg3657 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3677 -ssVspace-group -p3678 -(dp3679 -g3651 -Vstring -p3680 -sg3653 -I00 -sg3654 -(lp3681 -sg3656 -I00 -sg3657 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3682 -ssVwyckoff-species -p3683 -(dp3684 -g3651 -Vstring -p3685 -sg3653 -I00 -sg3654 -(lp3686 -g40 -asg3656 -I00 -sg3657 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3687 -ssVwyckoff-multiplicity-and-letter -p3688 -(dp3689 -g3651 -Vstring -p3690 -sg3653 -I00 -sg3654 -(lp3691 -g40 -asg3656 -I00 -sg3657 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3692 -ssVwyckoff-coordinates -p3693 -(dp3694 -g3651 -Vfloat -p3695 -sg3653 -I00 -sg3654 -(lp3696 -g40 -aI3 -asg3656 -I00 -sg3657 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3697 -ssVtemperature -p3698 -(dp3699 -g3651 -Vfloat -p3700 -sg3653 -I01 -sg3654 -(lp3701 -sg3656 -I01 -sg3657 -VTemperature of the crystal. -p3702 -ssVcauchy-stress -p3703 -(dp3704 -g3651 -Vfloat -p3705 -sg3653 -I01 -sg3654 -(lp3706 -I6 -asg3656 -I01 -sg3657 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that the vector ++ is in the direction of ++. The expected form should be [d d d r r r]. -p3707 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-tetragonal-crystal-npt -p3708 -(dp3709 -Vproperty-id -p3710 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-tetragonal-crystal-npt -p3711 -sVproperty-title -p3712 -VEquilibrium tetragonal crystal structure at a given temperature and stress state -p3713 -sVproperty-description -p3714 -VConventional lattice parameters and basis atom positions of a tetragonal crystal at a given temperature and stress state. -p3715 -sVshort-name -p3716 -(dp3717 -Vtype -p3718 -Vstring -p3719 -sVhas-unit -p3720 -I00 -sVextent -p3721 -(lp3722 -g40 -asVrequired -p3723 -I00 -sVdescription -p3724 -VShort name defining the tetragonal crystal type. -p3725 -ssVspecies -p3726 -(dp3727 -g3718 -Vstring -p3728 -sg3720 -I00 -sg3721 -(lp3729 -g40 -asg3723 -I01 -sg3724 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3730 -ssg49 -(dp3731 -g3718 -Vfloat -p3732 -sg3720 -I01 -sg3721 -(lp3733 -sg3723 -I01 -sg3724 -VThe length of the average unit cell vectors and . The two associated directions must correspond to the first and second components of the entries of 'basis-atom-coordinates'. The triad (, . ) must form a right-handed system. -p3734 -ssg121 -(dp3735 -g3718 -Vfloat -p3736 -sg3720 -I01 -sg3721 -(lp3737 -sg3723 -I01 -sg3724 -VThe average length of the unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (, . ) must form a right-handed system. -p3738 -ssVbasis-atom-coordinates -p3739 -(dp3740 -g3718 -Vfloat -p3741 -sg3720 -I00 -sg3721 -(lp3742 -g40 -aI3 -asg3723 -I01 -sg3724 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3743 -ssVspace-group -p3744 -(dp3745 -g3718 -Vstring -p3746 -sg3720 -I00 -sg3721 -(lp3747 -sg3723 -I00 -sg3724 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3748 -ssVwyckoff-species -p3749 -(dp3750 -g3718 -Vstring -p3751 -sg3720 -I00 -sg3721 -(lp3752 -g40 -asg3723 -I00 -sg3724 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3753 -ssVwyckoff-multiplicity-and-letter -p3754 -(dp3755 -g3718 -Vstring -p3756 -sg3720 -I00 -sg3721 -(lp3757 -g40 -asg3723 -I00 -sg3724 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3758 -ssVwyckoff-coordinates -p3759 -(dp3760 -g3718 -Vfloat -p3761 -sg3720 -I00 -sg3721 -(lp3762 -g40 -aI3 -asg3723 -I00 -sg3724 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3763 -ssVtemperature -p3764 -(dp3765 -g3718 -Vfloat -p3766 -sg3720 -I01 -sg3721 -(lp3767 -sg3723 -I01 -sg3724 -VTemperature of the crystal. -p3768 -ssVcauchy-stress -p3769 -(dp3770 -g3718 -Vfloat -p3771 -sg3720 -I01 -sg3721 -(lp3772 -I6 -asg3723 -I01 -sg3724 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of , and e_3 is in the direction of . The expected form should be [d d e 0 0 0]. -p3773 -sssVtag:staff@noreply.openkim.org,2014-04-15:property/structure-triclinic-crystal-npt -p3774 -(dp3775 -Vproperty-id -p3776 -Vtag:staff@noreply.openkim.org,2014-04-15:property/structure-triclinic-crystal-npt -p3777 -sVproperty-title -p3778 -VEquilibrium triclinic crystal structure at a given temperature and stress state -p3779 -sVproperty-description -p3780 -VConventional lattice parameters and basis atom positions of a triclinic crystal at a given temperature and stress state. -p3781 -sVshort-name -p3782 -(dp3783 -Vtype -p3784 -Vstring -p3785 -sVhas-unit -p3786 -I00 -sVextent -p3787 -(lp3788 -g40 -asVrequired -p3789 -I00 -sVdescription -p3790 -VShort name defining the triclinic crystal type. -p3791 -ssVspecies -p3792 -(dp3793 -g3784 -Vstring -p3794 -sg3786 -I00 -sg3787 -(lp3795 -g40 -asg3789 -I01 -sg3790 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3796 -ssg49 -(dp3797 -g3784 -Vfloat -p3798 -sg3786 -I01 -sg3787 -(lp3799 -sg3789 -I01 -sg3790 -VThe average length of unit cell vector . The associated direction must correspond to the first component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3800 -ssg3522 -(dp3801 -g3784 -Vfloat -p3802 -sg3786 -I01 -sg3787 -(lp3803 -sg3789 -I01 -sg3790 -VThe average length of unit cell vector . The associated direction must correspond to the second component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3804 -ssg121 -(dp3805 -g3784 -Vfloat -p3806 -sg3786 -I01 -sg3787 -(lp3807 -sg3789 -I01 -sg3790 -VThe average length of unit cell vector . The associated direction must correspond to the third component of the entries of 'basis-atom-coordinates'. The triad (,,) must form a right-handed system. -p3808 -ssValpha -p3809 -(dp3810 -g3784 -Vfloat -p3811 -sg3786 -I01 -sg3787 -(lp3812 -sg3789 -I01 -sg3790 -VThe angle between unit cell vectors and (which correspond to the second and third components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees. -p3813 -ssVbeta -p3814 -(dp3815 -g3784 -Vfloat -p3816 -sg3786 -I01 -sg3787 -(lp3817 -sg3789 -I01 -sg3790 -VThe angle between unit cell vectors and (which correspond to the first and third components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees. -p3818 -ssVgamma -p3819 -(dp3820 -g3784 -Vfloat -p3821 -sg3786 -I01 -sg3787 -(lp3822 -sg3789 -I01 -sg3790 -VThe angle between unit cell vectors and (which correspond to the first and second components of the entries of 'basis-atom-coordinates', respectively). Must be strictly greater than zero and strictly less than 90 degrees. -p3823 -ssVbasis-atom-coordinates -p3824 -(dp3825 -g3784 -Vfloat -p3826 -sg3786 -I00 -sg3787 -(lp3827 -g40 -aI3 -asg3789 -I01 -sg3790 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3828 -ssVspace-group -p3829 -(dp3830 -g3784 -Vstring -p3831 -sg3786 -I00 -sg3787 -(lp3832 -sg3789 -I00 -sg3790 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3833 -ssVwyckoff-species -p3834 -(dp3835 -g3784 -Vstring -p3836 -sg3786 -I00 -sg3787 -(lp3837 -g40 -asg3789 -I00 -sg3790 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3838 -ssVwyckoff-multiplicity-and-letter -p3839 -(dp3840 -g3784 -Vstring -p3841 -sg3786 -I00 -sg3787 -(lp3842 -g40 -asg3789 -I00 -sg3790 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3843 -ssVwyckoff-coordinates -p3844 -(dp3845 -g3784 -Vfloat -p3846 -sg3786 -I00 -sg3787 -(lp3847 -g40 -aI3 -asg3789 -I00 -sg3790 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3848 -ssVtemperature -p3849 -(dp3850 -g3784 -Vfloat -p3851 -sg3786 -I01 -sg3787 -(lp3852 -sg3789 -I01 -sg3790 -VTemperature of the crystal. -p3853 -ssVcauchy-stress -p3854 -(dp3855 -g3784 -Vfloat -p3856 -sg3786 -I01 -sg3787 -(lp3857 -I6 -asg3789 -I01 -sg3790 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis (,,) used to express the stress should be such that e_1 is in the direction of , e_2 is in the direction of ( x ), and e_3 is in the direction of ( x ). The expected form should be [d e f r s t]. -p3858 -sssVtag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt -p3859 -(dp3860 -Vproperty-id -p3861 -Vtag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt -p3862 -sVproperty-title -p3863 -VSurface energy broken bond fit model -p3864 -sVproperty-description -p3865 -VSurface energy fit obtained by calculating the number of broken bonds created by cleaving a crystal at a given hydrostatic stress and temperature. These are the prefactors associated with each term in the model. -p3866 -sVshort-name -p3867 -(dp3868 -Vtype -p3869 -Vstring -p3870 -sVhas-unit -p3871 -I00 -sVextent -p3872 -(lp3873 -g40 -asVrequired -p3874 -I00 -sVdescription -p3875 -VShort name defining the cubic crystal type. -p3876 -ssVspecies -p3877 -(dp3878 -g3869 -Vstring -p3879 -sg3871 -I00 -sg3872 -(lp3880 -g40 -asg3874 -I01 -sg3875 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3881 -ssg49 -(dp3882 -g3869 -Vfloat -p3883 -sg3871 -I01 -sg3872 -(lp3884 -sg3874 -I01 -sg3875 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p3885 -ssVspace-group -p3886 -(dp3887 -g3869 -Vstring -p3888 -sg3871 -I00 -sg3872 -(lp3889 -sg3874 -I00 -sg3875 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3890 -ssVwyckoff-species -p3891 -(dp3892 -g3869 -Vstring -p3893 -sg3871 -I00 -sg3872 -(lp3894 -g40 -asg3874 -I00 -sg3875 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3895 -ssVwyckoff-multiplicity-and-letter -p3896 -(dp3897 -g3869 -Vstring -p3898 -sg3871 -I00 -sg3872 -(lp3899 -g40 -asg3874 -I00 -sg3875 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3900 -ssVwyckoff-coordinates -p3901 -(dp3902 -g3869 -Vfloat -p3903 -sg3871 -I00 -sg3872 -(lp3904 -g40 -aI3 -asg3874 -I00 -sg3875 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3905 -ssVtemperature -p3906 -(dp3907 -g3869 -Vfloat -p3908 -sg3871 -I01 -sg3872 -(lp3909 -sg3874 -I01 -sg3875 -VTemperature of the crystal. -p3910 -ssVcauchy-stress -p3911 -(dp3912 -g3869 -Vfloat -p3913 -sg3871 -I01 -sg3872 -(lp3914 -I6 -asg3874 -I01 -sg3875 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p3915 -ssVfit-c -p3916 -(dp3917 -g3869 -Vfloat -p3918 -sg3871 -I01 -sg3872 -(lp3919 -sg3874 -I01 -sg3875 -VConstant offset term. -p3920 -ssVfit-p1 -p3921 -(dp3922 -g3869 -Vfloat -p3923 -sg3871 -I01 -sg3872 -(lp3924 -sg3874 -I01 -sg3875 -VFit parameter 1, the prefactor for the first term. -p3925 -ssVfit-p2 -p3926 -(dp3927 -g3869 -Vfloat -p3928 -sg3871 -I01 -sg3872 -(lp3929 -sg3874 -I01 -sg3875 -VFit parameter 2, the prefactor for the second term. -p3930 -ssVfit-p3 -p3931 -(dp3932 -g3869 -Vfloat -p3933 -sg3871 -I01 -sg3872 -(lp3934 -sg3874 -I01 -sg3875 -VFit parameter 3, the prefactor for the third term. -p3935 -ssVfit-error-max -p3936 -(dp3937 -g3869 -Vfloat -p3938 -sg3871 -I00 -sg3872 -(lp3939 -sg3874 -I01 -sg3875 -VMaximum relative error of the fit given calculated values, given by max{ abs( (E_{fit} - E_{measured)/E_measured ) }. -p3940 -ssVfit-error-range -p3941 -(dp3942 -g3869 -Vfloat -p3943 -sg3871 -I00 -sg3872 -(lp3944 -sg3874 -I01 -sg3875 -VTotal average relative range of the error for the fit, \u005csum{ |E_error / (E_max - E_min)| }/N, error given by E_{fit} - E_{measured} -p3945 -sssVtag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt -p3946 -(dp3947 -Vproperty-id -p3948 -Vtag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-cubic-crystal-npt -p3949 -sVproperty-title -p3950 -VSurface energy for a cubic crystal -p3951 -sVproperty-description -p3952 -VA surface (free) energy of a cubic monoatomic crystal at a specified hydrostatic stress and temperature. If computed, this corresponds to the 'relaxed' surface energy found by performing an energy minimization. At zero temperature, the calculation is for the potential energy as opposed to the free energy. -p3953 -sVshort-name -p3954 -(dp3955 -Vtype -p3956 -Vstring -p3957 -sVhas-unit -p3958 -I00 -sVextent -p3959 -(lp3960 -g40 -asVrequired -p3961 -I00 -sVdescription -p3962 -VShort name defining the cubic crystal type. -p3963 -ssVspecies -p3964 -(dp3965 -g3956 -Vstring -p3966 -sg3958 -I00 -sg3959 -(lp3967 -g40 -asg3961 -I01 -sg3962 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p3968 -ssg49 -(dp3969 -g3956 -Vfloat -p3970 -sg3958 -I01 -sg3959 -(lp3971 -sg3961 -I01 -sg3962 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p3972 -ssVbasis-atom-coordinates -p3973 -(dp3974 -g3956 -Vfloat -p3975 -sg3958 -I00 -sg3959 -(lp3976 -g40 -aI3 -asg3961 -I01 -sg3962 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p3977 -ssVspace-group -p3978 -(dp3979 -g3956 -Vstring -p3980 -sg3958 -I00 -sg3959 -(lp3981 -sg3961 -I00 -sg3962 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p3982 -ssVwyckoff-species -p3983 -(dp3984 -g3956 -Vstring -p3985 -sg3958 -I00 -sg3959 -(lp3986 -g40 -asg3961 -I00 -sg3962 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p3987 -ssVwyckoff-multiplicity-and-letter -p3988 -(dp3989 -g3956 -Vstring -p3990 -sg3958 -I00 -sg3959 -(lp3991 -g40 -asg3961 -I00 -sg3962 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p3992 -ssVwyckoff-coordinates -p3993 -(dp3994 -g3956 -Vfloat -p3995 -sg3958 -I00 -sg3959 -(lp3996 -g40 -aI3 -asg3961 -I00 -sg3962 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p3997 -ssVtemperature -p3998 -(dp3999 -g3956 -Vfloat -p4000 -sg3958 -I01 -sg3959 -(lp4001 -sg3961 -I01 -sg3962 -VTemperature of the crystal. -p4002 -ssVcauchy-stress -p4003 -(dp4004 -g3956 -Vfloat -p4005 -sg3958 -I01 -sg3959 -(lp4006 -I6 -asg3961 -I01 -sg3962 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p4007 -ssVmiller-indices -p4008 -(dp4009 -g3956 -Vint -p4010 -sg3958 -I00 -sg3959 -(lp4011 -I3 -asg3961 -I01 -sg3962 -VThe vector of Miller indices defining the crystal surface. -p4012 -ssVtermination -p4013 -(dp4014 -g3956 -Vstring -p4015 -sg3958 -I00 -sg3959 -(lp4016 -sg3961 -I00 -sg3962 -VDetails of the surface termination for crystals containing more than one basis atom. -p4017 -ssVstep-structure-notation -p4018 -(dp4019 -g3956 -Vstring -p4020 -sg3958 -I00 -sg3959 -(lp4021 -sg3961 -I00 -sg3962 -VThe surface step structure notation, e.g. w(h,k,l) x (hs,ks,ls) where (h,k,l) and (hs,ks,ls) are the Miller index of the the terrace and step planes, respectively. w is the atomic width of the terrace. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L -p4022 -ssVwood-notation -p4023 -(dp4024 -g3956 -Vstring -p4025 -sg3958 -I00 -sg3959 -(lp4026 -sg3961 -I00 -sg3962 -VThe surface structure defined in Wood notation, e.g. (\u005csqrt(2) x \u005csqrt(2))R45 or in general (a x b)R\u005ctheta. This means that the adsorbates locations with respect to the substrate are given by R(\u005ctheta)[a b] where R is a rotation matrix. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L -p4027 -ssVsurface-energy -p4028 -(dp4029 -g3956 -Vfloat -p4030 -sg3958 -I01 -sg3959 -(lp4031 -sg3961 -I01 -sg3962 -VThe surface (free) energy density (energy per unit area). When obtained in a calculation, this is the (free) energy per area in the relaxed structure obtained by performing an energy minimization. -p4032 -ssVreconstruction-description -p4033 -(dp4034 -g3956 -Vstring -p4035 -sg3958 -I00 -sg3959 -(lp4036 -sg3961 -I00 -sg3962 -VA description of the observed reconstruction if one took place. -p4037 -ssVrelaxed-surface-positions -p4038 -(dp4039 -g3956 -Vfloat -p4040 -sg3958 -I01 -sg3959 -(lp4041 -g40 -aI3 -asg3961 -I00 -sg3962 -VThe [x,y,z] coordinates of each particle after relaxation. -p4042 -sssVtag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal -p4043 -(dp4044 -Vproperty-id -p4045 -Vtag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-ideal-cubic-crystal -p4046 -sVproperty-title -p4047 -VIdeal surface energy for a cubic crystal -p4048 -sVproperty-description -p4049 -VThe surface energy of a cubic crystal for a surface obtained from the ideal crystal structure by cleaving along a specified plane, possibly with specified step structure or adsorbates. -p4050 -sVshort-name -p4051 -(dp4052 -Vtype -p4053 -Vstring -p4054 -sVhas-unit -p4055 -I00 -sVextent -p4056 -(lp4057 -g40 -asVrequired -p4058 -I00 -sVdescription -p4059 -VShort name defining the cubic crystal type. -p4060 -ssVspecies -p4061 -(dp4062 -g4053 -Vstring -p4063 -sg4055 -I00 -sg4056 -(lp4064 -g40 -asg4058 -I01 -sg4059 -VThe element symbols of the basis atoms. The order in which the species are specified must correspond to the order of the atoms listed in 'basis-atom-coordinates'. -p4065 -ssg49 -(dp4066 -g4053 -Vfloat -p4067 -sg4055 -I01 -sg4056 -(lp4068 -sg4058 -I01 -sg4059 -VAverage equilibrium conventional lattice constant of the cubic crystal. -p4069 -ssVbasis-atom-coordinates -p4070 -(dp4071 -g4053 -Vfloat -p4072 -sg4055 -I00 -sg4056 -(lp4073 -g40 -aI3 -asg4058 -I01 -sg4059 -VFractional coordinates of the basis atoms in the conventional unit cell. If the unit cell vectors are denoted by , , and , and the fractional coordinates of atom 'i' are [afrac_i, bfrac_i, cfrac_i], the value of 'basis-atom-coordinates' will be of the form [[afrac_1 bfrac_1 cfrac_1] [afrac_2 bfrac_2 cfrac_2] ... ]. All components of each basis atom should be between zero and one, inclusive of zero. -p4074 -ssVspace-group -p4075 -(dp4076 -g4053 -Vstring -p4077 -sg4055 -I00 -sg4056 -(lp4078 -sg4058 -I00 -sg4059 -VHermann-Mauguin designation for the space group associated with the symmetry of the crystal (e.g. Immm, Fm-3m, P6_3/mmc). -p4079 -ssVwyckoff-species -p4080 -(dp4081 -g4053 -Vstring -p4082 -sg4055 -I00 -sg4056 -(lp4083 -g40 -asg4058 -I00 -sg4059 -VThe element symbol of the atomic species of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal. The order of the entries must correspond to the order of the entries in 'wyckoff-multiplicity-and-letter' and 'wyckoff-coordinates'. -p4084 -ssVwyckoff-multiplicity-and-letter -p4085 -(dp4086 -g4053 -Vstring -p4087 -sg4055 -I00 -sg4056 -(lp4088 -g40 -asg4058 -I00 -sg4059 -VMultiplicity and standard letter of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal (e.g. 4a, 2b). Note that the sum of the Wyckoff multiplicities should equal the total number of elements in 'basis-atom-coordinates'. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-coordinates'. -p4089 -ssVwyckoff-coordinates -p4090 -(dp4091 -g4053 -Vfloat -p4092 -sg4055 -I00 -sg4056 -(lp4093 -g40 -aI3 -asg4058 -I00 -sg4059 -VCoordinates of the unique Wyckoff sites used in the fully symmetry-reduced description of the crystal, given as fractions of the lattice vectors. The order of elements in this array must correspond to the order of the entries listed in 'wyckoff-species' and 'wyckoff-multiplicity-and-letter'. -p4094 -ssVcauchy-stress -p4095 -(dp4096 -g4053 -Vfloat -p4097 -sg4055 -I01 -sg4056 -(lp4098 -I6 -asg4058 -I00 -sg4059 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the periodic cell. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p4099 -ssVmiller-indices -p4100 -(dp4101 -g4053 -Vint -p4102 -sg4055 -I00 -sg4056 -(lp4103 -I3 -asg4058 -I01 -sg4059 -VThe vector of Miller indices defining the crystal surface. -p4104 -ssVtermination -p4105 -(dp4106 -g4053 -Vstring -p4107 -sg4055 -I00 -sg4056 -(lp4108 -sg4058 -I00 -sg4059 -VDetails of the surface termination for crystals containing more than one basis atom. -p4109 -ssVideal-surface-energy -p4110 -(dp4111 -g4053 -Vfloat -p4112 -sg4055 -I01 -sg4056 -(lp4113 -sg4058 -I01 -sg4059 -VUnrelaxed surface energy density (energy per unit area), i.e. the energy per area of the structure obtained by cleaving the ideal crystal on the specified plane. -p4114 -ssVstep-structure-notation -p4115 -(dp4116 -g4053 -Vstring -p4117 -sg4055 -I00 -sg4056 -(lp4118 -sg4058 -I00 -sg4059 -VThe surface step structure notation, e.g. w(h,k,l) x (hs,ks,ls) where (h,k,l) and (hs,ks,ls) are the Miller index of the the terrace and step planes, respectively. w is the atomic width of the terrace. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L -p4119 -ssVwood-notation -p4120 -(dp4121 -g4053 -Vstring -p4122 -sg4055 -I00 -sg4056 -(lp4123 -sg4058 -I00 -sg4059 -VThe surface structure defined in Wood notation, e.g. (\u005csqrt(2) x \u005csqrt(2))R45 or in general (a x b)R\u005ctheta. This means that the adsorbates locations with respect to the substrate are given by R(\u005ctheta)[a b] where R is a rotation matrix. See 'Introduction to Surface Chemistry and Catalysis' by Gabor A. Somorjai, Yimin L -p4124 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt -p4125 -(dp4126 -Vproperty-id -p4127 -Vtag:staff@noreply.openkim.org,2015-05-26:property/unstable-stacking-fault-relaxed-energy-fcc-crystal-npt -p4128 -sVproperty-title -p4129 -VRelaxed unstable stacking energy for a monoatomic fcc crystal at zero temperature and a given pressure -p4130 -sVproperty-description -p4131 -VThe relaxed unstable stacking energy (USE) for a monoatomic fcc crystal at zero temperature and a specified pressure. The USE corresponds to the energy barrier for rigidly slipping one-half of an infinite crystal relative to the other along a <112> direction (fcc partial dislocation direction). Relaxation of the atomic positions is performed perpendicular to the fault plane. -p4132 -sg49 -(dp4133 -Vtype -p4134 -Vfloat -p4135 -sVhas-unit -p4136 -I01 -sVextent -p4137 -(lp4138 -sVrequired -p4139 -I01 -sVdescription -p4140 -VZero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure. -p4141 -ssVspecies -p4142 -(dp4143 -g4134 -Vstring -p4144 -sg4136 -I00 -sg4137 -(lp4145 -g40 -asg4139 -I01 -sg4140 -VThe element symbol of the fcc crystal material. This should contain only a single entry. -p4146 -ssVcauchy-stress -p4147 -(dp4148 -g4134 -Vfloat -p4149 -sg4136 -I01 -sg4137 -(lp4150 -I6 -asg4139 -I01 -sg4140 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p4151 -ssVunstable-slip-fraction -p4152 -(dp4153 -g4134 -Vfloat -p4154 -sg4136 -I00 -sg4137 -(lp4155 -sg4139 -I00 -sg4140 -VThe relative displacement in the 1/6<112> direction between the two crystal parts where the energy is maximum. The slip is normalized by the partial dislocation Burgers vector a0/sqrt(6). Therefore 'unstable-slip-fraction' must be between 0.0 and 1.0. -p4156 -ssVunstable-stacking-energy -p4157 -(dp4158 -g4134 -Vfloat -p4159 -sg4136 -I01 -sg4137 -(lp4160 -sg4139 -I01 -sg4140 -VRelaxed unstable stacking energy in units of energy per area. -p4161 -sssVtag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt -p4162 -(dp4163 -Vproperty-id -p4164 -Vtag:staff@noreply.openkim.org,2015-05-26:property/unstable-twinning-fault-relaxed-energy-fcc-crystal-npt -p4165 -sVproperty-title -p4166 -VRelaxed unstable twinning energy for a monoatomic fcc crystal at zero temperature and a given pressure -p4167 -sVproperty-description -p4168 -VThe relaxed unstable twinning energy (UTE) for a monoatomic fcc crystal at a zero temperature and a specified pressure. The UTE corresponds to the energy barrier for rigidly slipping one part of an infinite crystal on a {111} plane adjacent to a preexisting intrinsic stacking fault relative to the other part along a <112> direction (fcc partial dislocation direction). Relaxation of the atomic coordinates is performed perpendicular to the fault plane. -p4169 -sg49 -(dp4170 -Vtype -p4171 -Vfloat -p4172 -sVhas-unit -p4173 -I01 -sVextent -p4174 -(lp4175 -sVrequired -p4176 -I01 -sVdescription -p4177 -VZero-temperature, equilibrium conventional lattice constant of the fcc crystal consistent with the specified pressure. -p4178 -ssVspecies -p4179 -(dp4180 -g4171 -Vstring -p4181 -sg4173 -I00 -sg4174 -(lp4182 -g40 -asg4176 -I01 -sg4177 -VThe element symbol of the fcc crystal material. This should contain only a single entry. -p4183 -ssVcauchy-stress -p4184 -(dp4185 -g4171 -Vfloat -p4186 -sg4173 -I01 -sg4174 -(lp4187 -I6 -asg4176 -I01 -sg4177 -VThe [xx,yy,zz,yz,xz,xy] (i.e. [11,22,33,23,13,12]) components of the Cauchy stress acting on the crystal. The orthonormal basis used to express the stress should be aligned with the cubic 4-fold axes of the ideal crystal and the expected form of the stress tensor should be [d d d 0 0 0], where d > 0 indicates tensile stress. -p4188 -ssVunstable-slip-fraction -p4189 -(dp4190 -g4171 -Vfloat -p4191 -sg4173 -I00 -sg4174 -(lp4192 -sg4176 -I00 -sg4177 -VThe relative displacement in the 1/6<112> direction between the two crystal parts where the energy is maximum. The slip is normalized by the partial dislocation Burgers vector a0/sqrt(6). The slip is measured from an ideal fault-free structure. At a value of 1.0, an intrinsic stacking fault is formed. Therefore 'unstable-slip-fraction' must be between 1.0 and 2.0. -p4193 -ssVunstable-twinning-energy -p4194 -(dp4195 -g4171 -Vfloat -p4196 -sg4173 -I01 -sg4174 -(lp4197 -sg4176 -I01 -sg4177 -VRelaxed unstable twinning energy in units of energy per area. -p4198 -sssVtag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check -p4199 -(dp4200 -Vproperty-id -p4201 -Vtag:tadmor@noreply.openkim.org,2017-02-01:property/verification-check -p4202 -sVproperty-title -p4203 -VUniversal verification check property -p4204 -sVproperty-description -p4205 -VVerification checks are designed to explore basic model characteristics and conformance to the KIM API standard. Results from verification checks are reported in the standardized form defined in this property definition. -p4206 -sVvc-name -p4207 -(dp4208 -Vtype -p4209 -Vstring -p4210 -sVhas-unit -p4211 -I00 -sVextent -p4212 -(lp4213 -sVrequired -p4214 -I01 -sVdescription -p4215 -VA short name describing the verification check. -p4216 -ssVvc-description -p4217 -(dp4218 -g4209 -Vstring -p4219 -sg4211 -I00 -sg4212 -(lp4220 -sg4214 -I01 -sg4215 -VA short explanation of the intent of the verification check and what it does. -p4221 -ssVvc-category -p4222 -(dp4223 -g4209 -Vstring -p4224 -sg4211 -I00 -sg4212 -(lp4225 -sg4214 -I01 -sg4215 -VThe verification check category. There are three possibilities: `informational', `consistency', and `mandatory'. Informational verification checks provide useful information about the model that have no implications regarding its internal consistency. Consistency verification checks test for violations of internal consistency (e.g. the forces are not the negative gradient of the energy). Mandatory verification checks test for failures of a model to satisfy critical KIM API requirements or declared capabilities (such as supporting a specified species). -p4226 -ssVvc-grade-basis -p4227 -(dp4228 -g4209 -Vstring -p4229 -sg4211 -I00 -sg4212 -(lp4230 -sg4214 -I01 -sg4215 -VEach verification check returns a grade indicating how well the test was passed. The type of grade returned is defined by the vc-grade-basis. There are two options: `graded' and `passfail'. A `graded' verification check returns a letter grade `A', `B', `C', `D' or `F' (where `A' is best, and `F' indicated failure). A `passfail' verification check returns `P' for pass, or `F' for fail. In situations where the verification check could not be performed, a value of `N/A' (for not available) must be returned. -p4231 -ssVvc-grade -p4232 -(dp4233 -g4209 -Vstring -p4234 -sg4211 -I00 -sg4212 -(lp4235 -sg4214 -I01 -sg4215 -VThe verification check grade as defined by vc-grade-basis. -p4236 -ssVvc-files -p4237 -(dp4238 -g4209 -Vfile -p4239 -sg4211 -I00 -sg4212 -(lp4240 -g40 -asg4214 -I00 -sg4215 -VA list of one or more files generated by the VC. For example, these can be data files of results or graphic figures. -p4241 -ssVvc-comment -p4242 -(dp4243 -g4209 -Vstring -p4244 -sg4211 -I00 -sg4212 -(lp4245 -sg4214 -I00 -sg4215 -VText generated by the verification check to accompany the grade and explain its meaning. Additional information to explain or qualify the result can be included. -p4246 -sssVtag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt -p4247 -(dp4248 -Vproperty-id -p4249 -Vtag:staff@noreply.openkim.org,2023-02-21:property/crystal-structure-npt -p4250 -sVproperty-title -p4251 -VEquilibrium crystal structure at a given temperature and stress state -p4252 -sVproperty-description -p4253 -VEquilibrium structure of a crystal at a given temperature and applied stress. The equilibrium structure is expressed as an AFLOW prototype label and its corresponding free parameters representing the average positions of the constituent atoms. Multiple instances of this property with different free parameters may be reported for a given AFLOW prototype label, representing different local stable or unstable equilibria. There is no guarantee that any instance of this property represents the state of minimum Helmholtz free energy of this system, not even when the configuration space is restricted to the specified crystal prototype label. -p4254 -sVprototype-label -p4255 -(dp4256 -Vtype -p4257 -Vstring -p4258 -sVhas-unit -p4259 -I00 -sVextent -p4260 -(lp4261 -sVrequired -p4262 -I01 -sVdescription -p4263 -VPrototype label (not including an enumeration suffix) as defined by the AFLOW standard (e.g. 'A_tI4_141_a') for the structure. It is expected that the alphabetically lowest of all equivalent labels is chosen. -p4264 -ssVstoichiometric-species -p4265 -(dp4266 -g4257 -Vstring -p4267 -sg4259 -I00 -sg4260 -(lp4268 -g40 -asg4262 -I01 -sg4263 -VElement symbols corresponding to the atom types in the stoichiometric formula which appears at the start of the prototype label (e.g. ['Mo','S'] for the AB2 stoichiometric formula, means that the 'A' atom is 'Mo' and the 'B' atom is 'S' for the MoS_2 structure). -p4269 -ssg49 -(dp4270 -g4257 -Vfloat -p4271 -sg4259 -I01 -sg4260 -(lp4272 -sg4262 -I01 -sg4263 -VThe average equilibrium 'a' lattice constant of the crystal structure as defined by the AFLOW standard. Relative values of other lattice parameters (if present) are given in the 'parameter-values' key. -p4273 -ssVparameter-names -p4274 -(dp4275 -g4257 -Vstring -p4276 -sg4259 -I00 -sg4260 -(lp4277 -g40 -asg4262 -I00 -sg4263 -VNames of the parameters other than 'a', if present, corresponding to this AFLOW prototype. These can include lattice parameters from the set {'b/a','c/a','alpha','beta','gamma'} (for the conventional crystal structure defined by lattice parameters a, b, and c and angles alpha, beta, gamma), and coordinates of Wyckoff positions that have a degree of variability labeled as 'x*', 'y*' and 'z*' where the asterisk represents an integer as defined by the AFLOW standard. -p4278 -ssVparameter-values -p4279 -(dp4280 -g4257 -Vfloat -p4281 -sg4259 -I00 -sg4260 -(lp4282 -g40 -asg4262 -I00 -sg4263 -VEquilibrium values for the parameters listed in 'parameter-names' corresponding to the average positions of the atoms. Note that all parameters are dimensionless. -p4283 -ssVlibrary-prototype-label -p4284 -(dp4285 -g4257 -Vstring -p4286 -sg4259 -I00 -sg4260 -(lp4287 -sg4262 -I00 -sg4263 -VThe AFLOW library prototype, if any, matching the equilibrium structure. Prototypes in the AFLOW library are associated with common short names used by the materials community. The library prototype includes an integer enumeration suffix defined by the AFLOW standard when there are multiple parameter values associated with the structure (e.g. 'A_tI4_141_a-001' for 'betaSn'). Because these prototype labels are named according to their original material's conventional chemical formula, they may differ from the 'prototype-label' key, which is expected to be standardized to have the alphabetically lowest possible of all equivalent labels. -p4288 -ssVshort-name -p4289 -(dp4290 -g4257 -Vstring -p4291 -sg4259 -I00 -sg4260 -(lp4292 -g40 -asg4262 -I00 -sg4263 -VCommonly used name associated with the 'library-prototype-label' key according to the AFLOW prototype library (e.g. 'Face-Centered Cubic' or 'Molybdenite'). -p4293 -ssVtemperature -p4294 -(dp4295 -g4257 -Vfloat -p4296 -sg4259 -I01 -sg4260 -(lp4297 -sg4262 -I01 -sg4263 -VTemperature of the crystal. -p4298 -ssVcell-cauchy-stress -p4299 -(dp4300 -g4257 -Vfloat -p4301 -sg4259 -I01 -sg4260 -(lp4302 -I6 -asg4262 -I01 -sg4263 -VThe [xx,yy,zz,yz,xz,xy] components of the prescribed symmetric Cauchy stress tensor. The numerical value of the stress tensor of a test result or reference data may be different due to tolerance, and can be checked by inspecting the output files of the test or the reference data description. The components should be expressed in the same coordinate system as the structure specified by prototype-label and parameter-values, with the orientation of lattice vectors defined in M. J. Mehl et al., Comput. Mater. Sci. 136, S1 (2017). -p4303 -ssVcoordinates-file -p4304 -(dp4305 -g4257 -Vfile -p4306 -sg4259 -I00 -sg4260 -(lp4307 -sg4262 -I00 -sg4263 -VA file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle, and periodicity data. -p4308 -sssVtag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal -p4309 -(dp4310 -Vproperty-id -p4311 -Vtag:staff@noreply.openkim.org,2023-02-21:property/binding-energy-crystal -p4312 -sVproperty-title -p4313 -VEquilibrium crystal structure and binding potential energy at zero temperature and applied stress -p4314 -sVproperty-description -p4315 -VEquilibrium structure and energy of a crystal at zero temperature and applied stress. The equilibrium structure is expressed as an AFLOW prototype label and its corresponding free parameters. The equilibrium may be stable or unstable (not reported in this property). Multiple instances of this property with different free parameters may be reported for a given AFLOW prototype label, representing different stable or unstable equilibria. There is no guarantee that any instance of this property is the ground state of this system, not even when the configuration space is restricted to the specified crystal prototype label.\u000a\u000a\u000a The reported binding potential energy is the energy required to decompose the solid into its individual constituent particles isolated from each other. This is defined as the energy of the crystal less the energies of the isolated constituent particles. \u000a\u000a\u000a Two values are reported, the `binding-potential-energy-per-atom` is the average energy per atom in the unit cell, the `binding-potential-energy-per-formula` is the energy per chemical formula, which reflects the relative ratio of elements in the primitive unit cell of the crystal. For a crystal containing a single chemical element (regardless of structure) this is the same as the `binding-potential-energy-per-atom`, e.g. for hcp Mg the chemical formula is Mg and the 'binding-potential-energy-per-formula' is per magnesium atom (even though the hcp primitive unit cell contains two atoms). For compounds the 'binding-potential-energy-per-formula' will depend on the stoichiometric formula, e.g. for MoS_2 (AB2-type compound) the energy is per MoS_2 unit (i.e. 3 times larger than the `binding-potential-energy-per-atom` value). The reported energies are actual energies (not the negative of the energy as commonly reported), therefore these values will be negative for a crystal that is more stable than its isolated constituents. -p4316 -sVprototype-label -p4317 -(dp4318 -Vtype -p4319 -Vstring -p4320 -sVhas-unit -p4321 -I00 -sVextent -p4322 -(lp4323 -sVrequired -p4324 -I01 -sVdescription -p4325 -VPrototype label (not including an enumeration suffix) as defined by the AFLOW standard (e.g. 'A_tI4_141_a') for the structure. It is expected that the alphabetically lowest of all equivalent labels is chosen. -p4326 -ssVstoichiometric-species -p4327 -(dp4328 -g4319 -Vstring -p4329 -sg4321 -I00 -sg4322 -(lp4330 -g40 -asg4324 -I01 -sg4325 -VElement symbols corresponding to the atom types in the stoichiometric formula which appears at the start of the prototype label (e.g. ['Mo','S'] for the AB2 stoichiometric formula, means that the 'A' atom is 'Mo' and the 'B' atom is 'S' for the MoS_2 structure). -p4331 -ssg49 -(dp4332 -g4319 -Vfloat -p4333 -sg4321 -I01 -sg4322 -(lp4334 -sg4324 -I01 -sg4325 -VThe equilibrium 'a' lattice constant of the crystal structure as defined by the AFLOW standard. Relative values of other lattice parameters (if present) are given in the 'parameter-values' key. -p4335 -ssVparameter-names -p4336 -(dp4337 -g4319 -Vstring -p4338 -sg4321 -I00 -sg4322 -(lp4339 -g40 -asg4324 -I00 -sg4325 -VNames of the parameters other than 'a', if present, corresponding to this AFLOW prototype. These can include lattice parameters from the set {'b/a','c/a','alpha','beta','gamma'} (for the conventional crystal structure defined by lattice parameters a, b, and c and angles alpha, beta, gamma), and coordinates of Wyckoff positions that have a degree of variability labeled as 'x*', 'y*' and 'z*' where the asterisk represents an integer as defined by the AFLOW standard. -p4340 -ssVparameter-values -p4341 -(dp4342 -g4319 -Vfloat -p4343 -sg4321 -I00 -sg4322 -(lp4344 -g40 -asg4324 -I00 -sg4325 -VEquilibrium values for the parameters listed in 'parameter-names'. Note that all parameters are dimensionless. -p4345 -ssVlibrary-prototype-label -p4346 -(dp4347 -g4319 -Vstring -p4348 -sg4321 -I00 -sg4322 -(lp4349 -sg4324 -I00 -sg4325 -VThe AFLOW library prototype, if any, matching the equilibrium structure. Prototypes in the AFLOW library are associated with common short names used by the materials community. The library prototype includes an integer enumeration suffix defined by the AFLOW standard when there are multiple parameter values associated with the structure (e.g. 'A_tI4_141_a-001' for 'betaSn'). Because these prototype labels are named according to their original material's conventional chemical formula, they may differ from the 'prototype-label' key, which is expected to be standardized to have the alphabetically lowest possible of all equivalent labels. -p4350 -ssVshort-name -p4351 -(dp4352 -g4319 -Vstring -p4353 -sg4321 -I00 -sg4322 -(lp4354 -g40 -asg4324 -I00 -sg4325 -VCommonly used name associated with the 'library-prototype-label' key according to the AFLOW prototype library (e.g. 'Face-Centered Cubic' or 'Molybdenite'). -p4355 -ssVbinding-potential-energy-per-atom -p4356 -(dp4357 -g4319 -Vfloat -p4358 -sg4321 -I01 -sg4322 -(lp4359 -sg4324 -I01 -sg4325 -VBinding potential energy per atom of the crystal defined as follows: \u005cDelta \u005cbar{V}_{atom} = ( V(A_{N_A}B_{N_B}...) - [N_A V_{isolated}(A) + N_B V_{isolated}(B) + ...] )/(N_A + N_B ...), where \u005cDelta \u005cbar{V}_{atom} is the binding energy per atom, V(A_{N_A}B_{N_B}...) is the energy of (any) unit cell, V_{isolated}(X) is the energy of an isolated particle of species X, and N_X is the number of atoms of species X in the (same) unit cell. -p4360 -ssVbinding-potential-energy-per-formula -p4361 -(dp4362 -g4319 -Vfloat -p4363 -sg4321 -I01 -sg4322 -(lp4364 -sg4324 -I01 -sg4325 -VThis variable has the same definition as 'binding-potential-energy-per-atom' except that the energy is normalized per chemical formula instead of per atom, i.e. \u005cDelta \u005cbar{V}_{formula} = \u005cDelta \u005cbar{V}_{atom} N_{formula}, where N_{formula} is the number of atoms in the reduced stoichiometric formula, i.e. the sum of indices in the first section of the prototype-label. -p4365 -ssVcoordinates-file -p4366 -(dp4367 -g4319 -Vfile -p4368 -sg4321 -I00 -sg4322 -(lp4369 -sg4324 -I00 -sg4325 -VA file containing the atomic configuration including information such as the species, x,y,z coordinates of each particle, and periodicity data. -p4370 -sssa(dp4371 -Vatomic-mass -p4372 -g2 -sVbulk-modulus-isothermal-cubic-crystal-npt -p4373 -g25 -sVbulk-modulus-isothermal-hexagonal-crystal-npt -p4374 -g94 -sVcohesive-energy-lattice-invariant-shear-path-cubic-crystal -p4375 -g166 -sVcohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal -p4376 -g238 -sVcohesive-energy-relation-cubic-crystal -p4377 -g310 -sVcohesive-energy-shear-stress-path-cubic-crystal -p4378 -g367 -sVcohesive-free-energy-cubic-crystal -p4379 -g444 -sVcohesive-free-energy-hexagonal-crystal -p4380 -g506 -sVcohesive-potential-energy-2d-hexagonal-crystal -p4381 -g572 -sVcohesive-potential-energy-cubic-crystal -p4382 -g629 -sVcohesive-potential-energy-hexagonal-crystal -p4383 -g686 -sVconfiguration-cluster-fixed -p4384 -g747 -sVconfiguration-cluster-relaxed -p4385 -g780 -sVconfiguration-nonorthogonal-periodic-3d-cell-fixed-particles-fixed -p4386 -g828 -sVconfiguration-nonorthogonal-periodic-3d-cell-fixed-particles-relaxed -p4387 -g881 -sVconfiguration-nonorthogonal-periodic-3d-cell-relaxed-particles-fixed -p4388 -g954 -sVconfiguration-nonorthogonal-periodic-3d-cell-relaxed-particles-relaxed -p4389 -g1037 -sVconfiguration-periodic-2d-cell-fixed-particles-fixed -p4390 -g1125 -sVdislocation-core-energy-cubic-crystal-npt -p4391 -g1173 -sVelastic-constants-first-strain-gradient-isothermal-cubic-crystal-npt -p4392 -g1270 -sVelastic-constants-first-strain-gradient-isothermal-monoatomic-hexagonal-crystal-npt -p4393 -g1397 -sVelastic-constants-isothermal-cubic-crystal-npt -p4394 -g1593 -sVenthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-npt -p4395 -g1675 -sVenthalpy-of-mixing-curve-substitutional-binary-cubic-crystal-nvt -p4396 -g1772 -sVextrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt -p4397 -g1869 -sVgamma-surface-relaxed-fcc-crystal-npt -p4398 -g1901 -sVgrain-boundary-symmetric-tilt-energy-ideal-cubic-crystal -p4399 -g1943 -sVgrain-boundary-symmetric-tilt-energy-relaxed-cubic-crystal -p4400 -g2025 -sVgrain-boundary-symmetric-tilt-energy-relaxed-relation-cubic-crystal -p4401 -g2112 -sVintrinsic-stacking-fault-relaxed-energy-fcc-crystal-npt -p4402 -g2199 -sVlinear-thermal-expansion-coefficient-cubic-crystal-npt -p4403 -g2231 -sVmelting-temperature-constant-pressure-cubic-crystal -p4404 -g2298 -sVmonovacancy-formation-energy-monoatomic-cubic-diamond -p4405 -g2360 -sVmonovacancy-neutral-formation-free-energy-crystal-npt -p4406 -g2412 -sVmonovacancy-neutral-migration-energy-crystal-npt -p4407 -g2570 -sVmonovacancy-neutral-relaxation-volume-crystal-npt -p4408 -g2658 -sVmonovacancy-neutral-relaxed-formation-potential-energy-crystal-npt -p4409 -g2741 -sVmonovacancy-neutral-unrelaxed-formation-potential-energy-crystal-npt -p4410 -g2889 -sVphonon-dispersion-dos-cubic-crystal-npt -p4411 -g3037 -sVphonon-dispersion-relation-cubic-crystal-npt -p4412 -g3109 -sVshear-stress-path-cubic-crystal -p4413 -g3191 -sVstacking-fault-relaxed-energy-curve-fcc-crystal-npt -p4414 -g3268 -sVstructure-2d-hexagonal-crystal-npt -p4415 -g3305 -sVstructure-cubic-crystal-npt -p4416 -g3367 -sVstructure-hexagonal-crystal-npt -p4417 -g3429 -sVstructure-monoclinic-crystal-npt -p4418 -g3495 -sVstructure-orthorhombic-crystal-npt -p4419 -g3571 -sVstructure-rhombohedral-crystal-npt -p4420 -g3641 -sVstructure-tetragonal-crystal-npt -p4421 -g3708 -sVstructure-triclinic-crystal-npt -p4422 -g3774 -sVsurface-energy-broken-bond-fit-cubic-bravais-crystal-npt -p4423 -g3859 -sVsurface-energy-cubic-crystal-npt -p4424 -g3946 -sVsurface-energy-ideal-cubic-crystal -p4425 -g4043 -sVunstable-stacking-fault-relaxed-energy-fcc-crystal-npt -p4426 -g4125 -sVunstable-twinning-fault-relaxed-energy-fcc-crystal-npt -p4427 -g4162 -sVverification-check -p4428 -g4199 -sVcrystal-structure-npt -p4429 -g4247 -sVbinding-energy-crystal -p4430 -g4309 -sa(dp4431 -g2 -g4372 -sg25 -g4373 -sg94 -g4374 -sg166 -g4375 -sg238 -g4376 -sg310 -g4377 -sg367 -g4378 -sg444 -g4379 -sg506 -g4380 -sg572 -g4381 -sg629 -g4382 -sg686 -g4383 -sg747 -g4384 -sg780 -g4385 -sg828 -g4386 -sg881 -g4387 -sg954 -g4388 -sg1037 -g4389 -sg1125 -g4390 -sg1173 -g4391 -sg1270 -g4392 -sg1397 -g4393 -sg1593 -g4394 -sg1675 -g4395 -sg1772 -g4396 -sg1869 -g4397 -sg1901 -g4398 -sg1943 -g4399 -sg2025 -g4400 -sg2112 -g4401 -sg2199 -g4402 -sg2231 -g4403 -sg2298 -g4404 -sg2360 -g4405 -sg2412 -g4406 -sg2570 -g4407 -sg2658 -g4408 -sg2741 -g4409 -sg2889 -g4410 -sg3037 -g4411 -sg3109 -g4412 -sg3191 -g4413 -sg3268 -g4414 -sg3305 -g4415 -sg3367 -g4416 -sg3429 -g4417 -sg3495 -g4418 -sg3571 -g4419 -sg3641 -g4420 -sg3708 -g4421 -sg3774 -g4422 -sg3859 -g4423 -sg3946 -g4424 -sg4043 -g4425 -sg4125 -g4426 -sg4162 -g4427 -sg4199 -g4428 -sg4247 -g4429 -sg4309 -g4430 -sa. \ No newline at end of file diff --git a/pyproject.toml b/pyproject.toml index fb1e6f7..fe270a0 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,10 +1,39 @@ [build-system] -requires = ["setuptools", "wheel", "versioneer[toml]"] +requires = ["setuptools", "versioneer[toml]==0.29", "kim-edn>1.4.0"] build-backend = "setuptools.build_meta" +[project] +name = "kim-property" +authors = [{ name = "Yaser Afshar", email = "ya.afshar@gmail.com" }] +maintainers = [{ name = "Yaser Afshar", email = "ya.afshar@gmail.com" }] +description = "kim-property - KIM-PROPERTY utility module." +readme = { file = "README.md", content-type = "text/markdown" } +requires-python = ">=3.8" +classifiers = [ + "Development Status :: 5 - Production/Stable", + "Intended Audience :: Science/Research", + "Topic :: Scientific/Engineering", + "Operating System :: OS Independent", + "License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+)", + "Programming Language :: Python :: 3", +] +dynamic = [ "version" ] +keywords = [ "kim-property" ] + +[project.urls] +Homepage = "https://github.com/openkim/kim-property" +Issues = "https://github.com/openkim/kim-property/issues" + +[tool.setuptools.packages.find] +include = [ "kim_property*" ] + +[tool.setuptools.dynamic] +version = { attr = "kim_property.__version__" } + [tool.versioneer] VCS = "git" style = "pep440" versionfile_source = "kim_property/_version.py" +versionfile_build = "kim_property/_version.py" +tag_prefix = "v" parentdir_prefix = "kim_property-" - diff --git a/setup.cfg b/setup.cfg deleted file mode 100644 index d38b29d..0000000 --- a/setup.cfg +++ /dev/null @@ -1,7 +0,0 @@ -[versioneer] -VCS = git -style = pep440 -versionfile_source = kim_property/_version.py -versionfile_build = kim_property/_version.py -tag_prefix = -parentdir_prefix = kim_property- diff --git a/setup.py b/setup.py index 7611f49..c56bbf8 100644 --- a/setup.py +++ b/setup.py @@ -1,38 +1,11 @@ """Setuptools based setup module.""" -from setuptools import setup, find_packages +from setuptools import setup + import versioneer -with open("README.md", "r") as fh: - long_description = fh.read() setup( - name='kim-property', version=versioneer.get_version(), - description='kim-property - KIM-PROPERTY utility module.', - long_description=long_description, - long_description_content_type="text/markdown", - url='https://github.com/openkim/kim-property', - author='Yaser Afshar', - author_email='yafshar@umn.edu', - license='LGPL-2.1-or-later', - classifiers=[ - 'Development Status :: 5 - Production/Stable', - 'Intended Audience :: Science/Research', - 'Topic :: Scientific/Engineering', - 'Operating System :: OS Independent', - 'License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+)', - 'Programming Language :: Python :: 3.7', - 'Programming Language :: Python :: 3.8', - 'Programming Language :: Python :: 3.9' - 'Programming Language :: Python :: 3.10', - 'Programming Language :: Python :: 3.11', - 'Programming Language :: Python :: 3.12' - ], - install_requires=['kim-edn'], - python_requires='>=3.7', - include_package_data=True, - keywords='kim-property', - packages=find_packages(), cmdclass=versioneer.get_cmdclass(), ) diff --git a/tests/test_kim_property/__init__.py b/tests/test_kim_property/__init__.py index 960d40b..eb5133b 100644 --- a/tests/test_kim_property/__init__.py +++ b/tests/test_kim_property/__init__.py @@ -1,10 +1,6 @@ -import doctest import unittest -try: - import kim_property -except: - raise Exception('Failed to import `kim_property` utility module') +import kim_property class PyTest(unittest.TestCase): diff --git a/tests/test_kim_property/test_create.py b/tests/test_kim_property/test_create.py index f4ca886..5221a05 100644 --- a/tests/test_kim_property/test_create.py +++ b/tests/test_kim_property/test_create.py @@ -9,7 +9,8 @@ class TestCreateModule: def test_create(self): """Test the create functionality.""" # Correct object - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' # Create the property instance with the property name str1 = self.kim_property.kim_property_create( @@ -50,7 +51,9 @@ def test_create(self): self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_create, 10, 'new-name') - str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' + str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id" ' \ + '"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' # Create the property instance with the property name to the already created instance str3 = self.kim_property.kim_property_create( @@ -62,6 +65,9 @@ def test_create(self): self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_create, 1, 'atomic-mass', str1) + self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_create, + '3', 'cohesive-energy-relation-cubic-crystal') + def test_create_from_a_file(self): """Test the create functionality for a new file as input.""" # Correct object @@ -84,6 +90,11 @@ def test_create_from_a_file(self): self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_create, 1, join("tests", "fixtures", "atomic-mass.edn")) + emsg = 'the input property_name file contains a property ID:\n' \ + '"tag:brunnels.*mass"\nwhich.*\nUse the KIM.*file.\nSee.*' + self.assertRaisesRegex(self.KIMPropertyError, emsg, self.kim_property.kim_property_create, + 1, join("tests", "fixtures", "atomic-mass.edn")) + class TestPyTestCreateModule(TestCreateModule, PyTest): pass diff --git a/tests/test_kim_property/test_definition.py b/tests/test_kim_property/test_definition.py index 26d4a00..ec3268a 100644 --- a/tests/test_kim_property/test_definition.py +++ b/tests/test_kim_property/test_definition.py @@ -73,16 +73,19 @@ class TestPropertyDefinitionModuleComponents: def test_check_key_present(self): """Test if a key is present.""" # key is not an string - self.assertRaises(self.KIMPropertyError, self.kim_property.check_key_present, - 1, '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]') + self.assertRaises(self.KIMPropertyError, self.kim_property.check_key_present, 1, + '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]') # key does not exist - self.assertRaises(self.KIMPropertyError, self.kim_property.check_key_present, - "short-name", '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]') + self.assertRaises(self.KIMPropertyError, self.kim_property.check_key_present, "short-name", + '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]') # key exists - self.kim_property.check_key_present( - "instance-id", '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]') + self.kim_property.check_key_present("instance-id", + '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]') def test_check_property_id_format(self): """Test if the property id fomrat is correct.""" @@ -125,10 +128,21 @@ def test_check_property_title_format(self): def test_check_required_keys_present(self): """Test if the required property keys are present.""" - str1 = '{"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" "property-title" "Cohesive energy for an unrelaxed lattice-invariant shear path deformation of a cubic crystal" "property-description" "Unrelaxed cohesive energy versus shear relation along a lattice-invariant deformation path of a cubic crystal at zero absolute temperature. The lattice-invariant shear path is defined by a shearing direction and shear plane normal relative to the reference conventional crystal coordinate system. Unit cell atomic shifts are NOT minimized for each value of the shear parameter."}' - - obj1 = {"property-id": "tag:staff@noreply.openkim.org,2015-05-26:property/cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal", - "property-title": "Cohesive energy for an unrelaxed lattice-invariant shear path deformation of a cubic crystal"} + str1 = '{"property-id" "tag:staff@noreply.openkim.org,2015-05-26:property/' \ + 'cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal" ' \ + '"property-title" "Cohesive energy for an unrelaxed lattice-invariant ' \ + 'shear path deformation of a cubic crystal" "property-description" ' \ + '"Unrelaxed cohesive energy versus shear relation along a lattice-invariant ' \ + 'deformation path of a cubic crystal at zero absolute temperature. The ' \ + 'lattice-invariant shear path is defined by a shearing direction and shear ' \ + 'plane normal relative to the reference conventional crystal coordinate system. ' \ + 'Unit cell atomic shifts are NOT minimized for each value of the shear parameter."}' + + obj1 = {"property-id": + "tag:staff@noreply.openkim.org,2015-05-26:property/" + "cohesive-energy-lattice-invariant-shear-unrelaxed-path-cubic-crystal", + "property-title": + "Cohesive energy for an unrelaxed lattice-invariant shear path deformation of a cubic crystal"} self.kim_property.check_required_keys_present(str1) diff --git a/tests/test_kim_property/test_destroy.py b/tests/test_kim_property/test_destroy.py index 8a8a162..5479bd0 100644 --- a/tests/test_kim_property/test_destroy.py +++ b/tests/test_kim_property/test_destroy.py @@ -8,7 +8,8 @@ class TestDestroyModule: def test_destroy(self): """Test the destroy functionality.""" - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' # Destroy the property instance str1 = self.kim_property.kim_property_destroy(str_obj, 1) @@ -19,7 +20,9 @@ def test_destroy(self): self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_destroy, str_obj, 1.0) - str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' + str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id"' \ + ' "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' # Destroy one of the property instance str2 = self.kim_property.kim_property_destroy(str_obj2, 2) diff --git a/tests/test_kim_property/test_ednify.py b/tests/test_kim_property/test_ednify.py new file mode 100644 index 0000000..789b130 --- /dev/null +++ b/tests/test_kim_property/test_ednify.py @@ -0,0 +1,132 @@ +from os.path import abspath, join, isfile, isdir +from io import BytesIO, StringIO + +import kim_edn + +from kim_property.ednify import ednify_kim_properties, unednify_kim_properties +from tests.test_kim_property import PyTest + + +class TestEdnify: + """Test KIM properties ednify module.""" + + def test_ednify_kim_propertieis(self): + """Test ednifying the KIM properties.""" + # Property definition edn file + edn_file1 = join('tests', 'fixtures', 'atomic-mass.edn') + self.assertTrue(isfile(edn_file1)) + + edn_file2 = join( + 'tests', 'fixtures', 'cohesive-energy-relation-cubic-crystal.edn' + ) + self.assertTrue(isfile(edn_file2)) + + properties = { + 'tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass': + kim_edn.load(edn_file1), + 'tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal': + kim_edn.load(edn_file2), + } + + name_to_id = { + 'atomic-mass': + 'tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass', + 'cohesive-energy-relation-cubic-crystal': + 'tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal', + } + + id_to_name = { + 'tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass': + 'atomic-mass', + 'tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal': + 'cohesive-energy-relation-cubic-crystal', + } + + sio = StringIO() + ednify_kim_properties(properties, sio) + + _properties, _name_to_id, _id_to_name = kim_edn.loads(sio.getvalue()) + + self.assertTrue(_properties == properties) + self.assertTrue(_name_to_id == name_to_id) + self.assertTrue(_id_to_name == id_to_name) + + bio = BytesIO() + self.assertRaises(TypeError, ednify_kim_properties, properties, bio) + + msg = 'a bytes-like object is required.*' + self.assertRaisesRegex( + TypeError, msg, ednify_kim_properties, properties, bio) + + kim_property_files_path = join( + "external", "openkim-properties", "properties") + + if not isdir(abspath(kim_property_files_path)): + sio = StringIO() + self.assertRaises( + self.KIMPropertyError, ednify_kim_properties, None, sio) + + msg = 'property files can not be found at.*' + self.assertRaisesRegex( + self.KIMPropertyError, msg, ednify_kim_properties, None, sio + ) + + def test_unednify_kim_properties(self): + """Test unednifying the KIM properties.""" + + # Fails when can't load edn from unicode string + self.assertRaises( + kim_edn.decoder.KIMEDNDecodeError, + unednify_kim_properties, + 'kim_properties.edn', + ) + + # Property definition edn file + edn_file1 = join('tests', 'fixtures', 'atomic-mass.edn') + self.assertTrue(isfile(edn_file1)) + + edn_file2 = join( + 'tests', 'fixtures', 'cohesive-energy-relation-cubic-crystal.edn' + ) + self.assertTrue(isfile(edn_file2)) + + properties = { + 'tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass': + kim_edn.load(edn_file1), + 'tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal': + kim_edn.load(edn_file2), + } + + sio = StringIO() + ednify_kim_properties(properties, sio) + + # Test the unpickle utility + _properties, _name_to_id, _id_to_name = unednify_kim_properties(sio.getvalue()) + + name_to_id = { + 'atomic-mass': + 'tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass', + 'cohesive-energy-relation-cubic-crystal': + 'tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal', + } + + id_to_name = { + 'tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass': + 'atomic-mass', + 'tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal': + 'cohesive-energy-relation-cubic-crystal', + } + + self.assertTrue(_properties == properties) + self.assertTrue(_name_to_id == name_to_id) + self.assertTrue(_id_to_name == id_to_name) + + sio1 = StringIO() + # Fails when neither can open nor load the input + self.assertRaises( + kim_edn.decoder.KIMEDNDecodeError, unednify_kim_properties, sio1.getvalue() + ) + + +class TestPyTestEdnify(TestEdnify, PyTest): + pass diff --git a/tests/test_kim_property/test_instance.py b/tests/test_kim_property/test_instance.py index 801f936..fe78383 100644 --- a/tests/test_kim_property/test_instance.py +++ b/tests/test_kim_property/test_instance.py @@ -2,9 +2,11 @@ import kim_edn -from tests.test_kim_property import PyTest +from kim_property import KIMPropertyError from kim_property.create import PROPERTY_ID_TO_PROPERTY_NAME +from tests.test_kim_property import PyTest + SOURCE_VALUE = [ [0, 0, 0, 0, 0, 0, ], "P-1", @@ -258,17 +260,20 @@ def test_check_instance_optional_key_standard_pairs_format(self): # "extent" specifies single item self.assertRaises(self.KIMPropertyError, self.kim_property.check_instance_optional_key_standard_pairs_format, - {"source-value": [3.9149, 3.149], "source-unit": "angstrom", "digits": 5}, {"type": "float", "has-unit": True, "extent": [], "required": True}) + {"source-value": [3.9149, 3.149], "source-unit": "angstrom", "digits": 5}, + {"type": "float", "has-unit": True, "extent": [], "required": True}) # "extent" dimension does not match with "source-unit" dimension self.assertRaises(self.KIMPropertyError, self.kim_property.check_instance_optional_key_standard_pairs_format, - {"source-value": [3.9149], "digits": 5}, {"type": "float", "has-unit": True, "extent": [2], "required": True}) + {"source-value": [3.9149], "digits": 5}, + {"type": "float", "has-unit": True, "extent": [2], "required": True}) # "source-unit" is required but is not there self.assertRaises(self.KIMPropertyError, self.kim_property.check_instance_optional_key_standard_pairs_format, - {"source-value": [3.9149, 3.149], "digits": 5}, {"type": "float", "has-unit": True, "extent": [2], "required": True}) + {"source-value": [3.9149, 3.149], "digits": 5}, + {"type": "float", "has-unit": True, "extent": [2], "required": True}) # Fail for a wrong key in standard key-value pairs self.assertRaises(self.KIMPropertyError, @@ -298,13 +303,15 @@ def test_check_instance_optional_key_marked_required_are_present(self): pi, pd) # property definition is not a dict - pi = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", "instance-id": 1} + pi = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", + "instance-id": 1} pd = ["property-id"] self.assertRaises(self.KIMPropertyError, self.kim_property.check_instance_optional_key_marked_required_are_present, pi, pd) - pi = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", "instance-id": 1} + pi = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", + "instance-id": 1} pd = kim_edn.load( join("tests", "fixtures", "cohesive-energy-relation-cubic-crystal.edn")) self.assertRaises(self.KIMPropertyError, @@ -318,7 +325,8 @@ def test_check_property_instances(self): self.kim_property.check_property_instances, None, None) - pi = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", "instance-id": 1} + pi = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", + "instance-id": 1} self.assertRaises(self.KIMPropertyError, self.kim_property.check_property_instances, pi, fp=None, fp_path=join("tests", "fixtures", "cohesive-energy-relation-cubic-crystal.edn")) @@ -341,24 +349,31 @@ def test_check_property_instances(self): pd = {"property-id": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal", "property-title": "Cohesive energy versus lattice constant relation for a cubic crystal", - "property-description": "Cohesive energy versus lattice constant relation for a cubic crystal at zero absolute temperature."} + "property-description": + "Cohesive energy versus lattice constant relation for a cubic crystal at zero absolute temperature."} # Fails if both fp and fpath exists self.assertRaises(self.KIMPropertyError, self.kim_property.check_property_instances, pi, fp=pd, fp_path="cohesive-energy-relation-cubic-crystal.edn") # Fails if unable to find a KIM property definitio - pi = {"property-id": "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt", + pi = {"property-id": + "tag:staff@noreply.openkim.org,2014-05-21:property/surface-energy-broken-bond-fit-cubic-bravais-crystal-npt", "instance-id": 1} self.assertRaises(self.KIMPropertyError, self.kim_property.check_property_instances, pi, fp=None, fp_path=join("tests", "fixtures")) - fp = '{"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "property-title" "Atomic mass" "property-description" "The atomic mass of the element" "species" {"type" "string" "has-unit" false "extent" [] "required" true "description" "Element symbol of the species"} "mass" {"type" "float" "has-unit" true "extent" [] "required" true "description" "Mass of a single atom of the species"}}' - pi = '[{"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 1 "species" {"source-value" "Ar"} "mass" {"source-value" 39.948 "source-unit" "grams/mole"}}]' + fp = '{"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "property-title" ' \ + '"Atomic mass" "property-description" "The atomic mass of the element" "species" {"type" "string" ' \ + '"has-unit" false "extent" [] "required" true "description" "Element symbol of the species"} "mass" ' \ + '{"type" "float" "has-unit" true "extent" [] "required" true "description" "Mass of a single atom of ' \ + 'the species"}}' + pi = '[{"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 1 ' \ + '"species" {"source-value" "Ar"} "mass" {"source-value" 39.948 "source-unit" "grams/mole"}}]' try: self.kim_property.check_property_instances(pi, fp=fp) passed = True - except: + except KIMPropertyError: passed = False self.assertTrue(passed) diff --git a/tests/test_kim_property/test_kim_property.py b/tests/test_kim_property/test_kim_property.py index 04fc5e0..210dbd1 100644 --- a/tests/test_kim_property/test_kim_property.py +++ b/tests/test_kim_property/test_kim_property.py @@ -11,7 +11,8 @@ class TestPropertyModule: def test_create(self): """Test the create functionality.""" # Correct object - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' # Create the property instance with the property name str1 = self.kim_property.kim_property_create( @@ -43,7 +44,9 @@ def test_create(self): self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_create, 10, 'new-name') - str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' + str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id" ' \ + '"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' # Create the property instance with the property name to the already created instance str3 = self.kim_property.kim_property_create( @@ -76,7 +79,8 @@ def test_create_sorted(self): def test_destroy(self): """Test the destroy functionality.""" - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' # Destroy the property instance str1 = self.kim_property.kim_property_destroy(str_obj, 1) @@ -87,7 +91,9 @@ def test_destroy(self): self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_destroy, str_obj, 1.0) - str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id" "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' + str_obj2 = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1} {"property-id"' \ + ' "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass" "instance-id" 2}]' # Destroy one of the property instance str2 = self.kim_property.kim_property_destroy(str_obj2, 2) @@ -108,12 +114,14 @@ def test_modify(self): self.kim_property.kim_property_modify, str_obj, 1) # Fails when there is a different instance id - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_modify, str_obj, 2) # Fails when not having the instance id - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal"}]' self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_modify, str_obj, 1) @@ -153,7 +161,14 @@ def test_modify(self): kim_obj = kim_edn.load(str_obj)[0] - Property_Instance = '{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1 "short-name" {"source-value" ["fcc"]} "species" {"source-value" ["Al" "Al" "Al" "Al"]} "a" {"source-value" [3.9149 4.0 4.032 4.0817 4.1602] "source-unit" "angstrom" "digits" 5} "basis-atom-coordinates" {"source-value" [[0.0 0.0 0.0] [0.5 0.5 0.0] [0.5 0.0 0.5] [0.0 0.5 0.5]]} "cohesive-potential-energy" {"source-value" [3.324 3.3576 3.36 3.355 3.326] "source-std-uncert-value" [0.002 0.0001 1e-05 0.0012 0.00015] "source-unit" "eV" "digits" 5}}' + Property_Instance = '{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1 "short-name" ' \ + '{"source-value" ["fcc"]} "species" {"source-value" ["Al" "Al" "Al" "Al"]} ' \ + '"a" {"source-value" [3.9149 4.0 4.032 4.0817 4.1602] "source-unit" ' \ + '"angstrom" "digits" 5} "basis-atom-coordinates" {"source-value" ' \ + '[[0.0 0.0 0.0] [0.5 0.5 0.0] [0.5 0.0 0.5] [0.0 0.5 0.5]]} ' \ + '"cohesive-potential-energy" {"source-value" [3.324 3.3576 3.36 3.355 3.326] ' \ + '"source-std-uncert-value" [0.002 0.0001 1e-05 0.0012 0.00015] "source-unit" "eV" "digits" 5}}' self.assertTrue(Property_Instance == kim_edn.dumps(kim_obj)) diff --git a/tests/test_kim_property/test_modify.py b/tests/test_kim_property/test_modify.py index 2f4152a..3c51ab2 100644 --- a/tests/test_kim_property/test_modify.py +++ b/tests/test_kim_property/test_modify.py @@ -1,5 +1,3 @@ -from os.path import join, isfile - import kim_edn from tests.test_kim_property import PyTest @@ -40,7 +38,15 @@ def test_modify(self): kim_obj = kim_edn.load(str_obj)[0] - Property_Instance = '{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1 "short-name" {"source-value" ["fcc"]} "species" {"source-value" ["Al" "Al" "Al" "Al"]} "a" {"source-value" [3.9149 4.0 4.032 4.0817 4.1602] "source-unit" "angstrom" "digits" 5} "basis-atom-coordinates" {"source-value" [[0.0 0.0 0.0] [0.5 0.5 0.0] [0.5 0.0 0.5] [0.0 0.5 0.5]]} "cohesive-potential-energy" {"source-value" [3.324 3.3576 3.36 3.355 3.326] "source-std-uncert-value" [0.002 0.0001 1e-05 0.0012 0.00015] "source-unit" "eV" "digits" 5}}' + Property_Instance = '{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1 "short-name" ' \ + '{"source-value" ["fcc"]} "species" {"source-value" ["Al" "Al" "Al" "Al"]} ' \ + '"a" {"source-value" [3.9149 4.0 4.032 4.0817 4.1602] "source-unit" ' \ + '"angstrom" "digits" 5} "basis-atom-coordinates" {"source-value" ' \ + '[[0.0 0.0 0.0] [0.5 0.5 0.0] [0.5 0.0 0.5] [0.0 0.5 0.5]]} ' \ + '"cohesive-potential-energy" {"source-value" [3.324 3.3576 3.36 3.355 3.326] ' \ + '"source-std-uncert-value" [0.002 0.0001 1e-05 0.0012 0.00015] "source-unit" ' \ + '"eV" "digits" 5}}' self.assertTrue(Property_Instance == kim_edn.dumps(kim_obj)) @@ -109,6 +115,15 @@ def test_modify(self): self.assertTrue(Property_Instance == kim_edn.dumps(kim_obj)) # Test for scalar values + str_obj = self.kim_property.kim_property_modify( + str_obj, 1, + "key", "cohesive-potential-energy", + "source-asym-std-uncert-neg", "2.3") + + kim_obj = kim_edn.load(str_obj)[0] + + self.assertTrue(kim_obj["cohesive-potential-energy"]["source-asym-std-uncert-neg"] == 2.3) + str_obj = self.kim_property.kim_property_modify( str_obj, 1, "key", "space-group", @@ -156,12 +171,14 @@ def test_modify_exception(self): self.kim_property.kim_property_modify, str_obj, 1) # Fails when there is a different instance id - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal" "instance-id" 1}]' self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_modify, str_obj, 2) # Fails when not having the instance id - str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"}]' + str_obj = '[{"property-id" "tag:staff@noreply.openkim.org,2014-04-15:property/' \ + 'cohesive-energy-relation-cubic-crystal"}]' self.assertRaises(self.KIMPropertyError, self.kim_property.kim_property_modify, str_obj, 1) @@ -214,12 +231,9 @@ def test_modify_exception(self): str_obj, 1, "key", "short-name", "source-value", "fcc") - msg = 'input value ' - msg += '"{}" doesn\'t meet the '.format("fcc") - msg += 'format specification. An integer ' - msg += 'equal to or greater than 1 ' - msg += 'or integer indices range of ' - msg += '"start:stop".' + msg = 'input value "fcc" doesn\'t meet the format specification. ' + msg += 'An integer equal to or greater than 1 or integer ' + msg += 'indices range of "start:stop".' self.assertRaisesRegex(self.KIMPropertyError, msg, self.kim_property.kim_property_modify, diff --git a/tests/test_kim_property/test_numeric.py b/tests/test_kim_property/test_numeric.py index 50cc149..4552cef 100644 --- a/tests/test_kim_property/test_numeric.py +++ b/tests/test_kim_property/test_numeric.py @@ -259,8 +259,10 @@ def test_create_full_array_6d(self): a3 = create_full_array([1, 2, 1, 1, 1, 1], 1.0) self.assertTrue(a3 == [[[[[[1.0]]]], [[[[1.0]]]]]]) a4 = create_full_array([2, 2, 2, 2, 2, 2], 1) - self.assertTrue(a4 == [[[[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]], [[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]]], [ - [[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]], [[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]]]]) + self.assertTrue(a4 == [[[[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]], + [[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]]], + [[[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]], + [[[[1, 1], [1, 1]], [[1, 1], [1, 1]]], [[[1, 1], [1, 1]], [[1, 1], [1, 1]]]]]]) def test_extend_full_array(self): """Test the extend_full_array function.""" diff --git a/tests/test_kim_property/test_pickle.py b/tests/test_kim_property/test_pickle.py deleted file mode 100644 index 386d77b..0000000 --- a/tests/test_kim_property/test_pickle.py +++ /dev/null @@ -1,98 +0,0 @@ -from os.path import join, isfile -from io import BytesIO, StringIO -import pickle - -import kim_edn - -from kim_property.pickle import \ - pickle_kim_properties, \ - unpickle_kim_properties -from tests.test_kim_property import PyTest - - -class TestPickle: - """Test KIM properties pickle module.""" - - def test_pickle_kim_properties(self): - """Test pickling the KIM properties.""" - # Property definition edn file - edn_file1 = join("tests", "fixtures", "atomic-mass.edn") - self.assertTrue(isfile(edn_file1)) - - edn_file2 = join("tests", "fixtures", - "cohesive-energy-relation-cubic-crystal.edn") - self.assertTrue(isfile(edn_file2)) - - properties = {"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass": kim_edn.load(edn_file1), - "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal": kim_edn.load(edn_file2)} - - name_to_id = {"atomic-mass": "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass", - "cohesive-energy-relation-cubic-crystal": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"} - - id_to_name = {"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass": "atomic-mass", - "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal": "cohesive-energy-relation-cubic-crystal"} - - bio = BytesIO() - pickle_kim_properties(properties, bio) - - _properties, _name_to_id, _id_to_name = pickle.loads(bio.getvalue()) - - self.assertTrue(_properties == properties) - self.assertTrue(_name_to_id == name_to_id) - self.assertTrue(_id_to_name == id_to_name) - - sio = StringIO() - self.assertRaises(self.KIMPropertyError, pickle_kim_properties, - properties, sio) - - def test_pickle_err_class(self): - """Test pickling the KIM Error module.""" - obj = pickle.dumps(self.KIMPropertyError( - "Test pickling the KIM Error module.")) - self.assertTrue(obj != None) - - def test_unpickle_kim_properties(self): - """Test unpickling the KIM properties.""" - - # Fails when can't load pickle from unicode string - self.assertRaises(self.KIMPropertyError, - unpickle_kim_properties, - 'kim_properties.pickle') - - # Property definition edn file - edn_file1 = join("tests", "fixtures", "atomic-mass.edn") - self.assertTrue(isfile(edn_file1)) - - edn_file2 = join("tests", "fixtures", - "cohesive-energy-relation-cubic-crystal.edn") - self.assertTrue(isfile(edn_file2)) - - properties = {"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass": kim_edn.load(edn_file1), - "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal": kim_edn.load(edn_file2)} - - bio = BytesIO() - pickle_kim_properties(properties, bio) - - # Test the unpickle utility - _properties, _name_to_id, _id_to_name = unpickle_kim_properties( - bio.getvalue()) - - name_to_id = {"atomic-mass": "tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass", - "cohesive-energy-relation-cubic-crystal": "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal"} - - id_to_name = {"tag:brunnels@noreply.openkim.org,2016-05-11:property/atomic-mass": "atomic-mass", - "tag:staff@noreply.openkim.org,2014-04-15:property/cohesive-energy-relation-cubic-crystal": "cohesive-energy-relation-cubic-crystal"} - - self.assertTrue(_properties == properties) - self.assertTrue(_name_to_id == name_to_id) - self.assertTrue(_id_to_name == id_to_name) - - bio1 = BytesIO() - # Fails when neither can open nor load the input - self.assertRaises(self.KIMPropertyError, - unpickle_kim_properties, - bio1.getvalue()) - - -class TestPyTestPickle(TestPickle, PyTest): - pass diff --git a/versioneer.py b/versioneer.py deleted file mode 100644 index dd8ece3..0000000 --- a/versioneer.py +++ /dev/null @@ -1,2005 +0,0 @@ -#!/usr/bin/env python - -import sys, base64 -from typing import NoReturn - -VERSIONEER_b64 = """ -CiMgVmVyc2lvbjogMC4yOQoKIiIiVGhlIFZlcnNpb25lZXIgLSBsaWtlIGEg -cm9ja2V0ZWVyLCBidXQgZm9yIHZlcnNpb25zLgoKVGhlIFZlcnNpb25lZXIK -PT09PT09PT09PT09PT0KCiogbGlrZSBhIHJvY2tldGVlciwgYnV0IGZvciB2 -ZXJzaW9ucyEKKiBodHRwczovL2dpdGh1Yi5jb20vcHl0aG9uLXZlcnNpb25l -ZXIvcHl0aG9uLXZlcnNpb25lZXIKKiBCcmlhbiBXYXJuZXIKKiBMaWNlbnNl -OiBQdWJsaWMgRG9tYWluIChVbmxpY2Vuc2UpCiogQ29tcGF0aWJsZSB3aXRo -OiBQeXRob24gMy43LCAzLjgsIDMuOSwgMy4xMCwgMy4xMSBhbmQgcHlweTMK -KiBbIVtMYXRlc3QgVmVyc2lvbl1bcHlwaS1pbWFnZV1dW3B5cGktdXJsXQoq -IFshW0J1aWxkIFN0YXR1c11bdHJhdmlzLWltYWdlXV1bdHJhdmlzLXVybF0K -ClRoaXMgaXMgYSB0b29sIGZvciBtYW5hZ2luZyBhIHJlY29yZGVkIHZlcnNp -b24gbnVtYmVyIGluIHNldHVwdG9vbHMtYmFzZWQKcHl0aG9uIHByb2plY3Rz -LiBUaGUgZ29hbCBpcyB0byByZW1vdmUgdGhlIHRlZGlvdXMgYW5kIGVycm9y -LXByb25lICJ1cGRhdGUKdGhlIGVtYmVkZGVkIHZlcnNpb24gc3RyaW5nIiBz -dGVwIGZyb20geW91ciByZWxlYXNlIHByb2Nlc3MuIE1ha2luZyBhIG5ldwpy -ZWxlYXNlIHNob3VsZCBiZSBhcyBlYXN5IGFzIHJlY29yZGluZyBhIG5ldyB0 -YWcgaW4geW91ciB2ZXJzaW9uLWNvbnRyb2wKc3lzdGVtLCBhbmQgbWF5YmUg -bWFraW5nIG5ldyB0YXJiYWxscy4KCgojIyBRdWljayBJbnN0YWxsCgpWZXJz -aW9uZWVyIHByb3ZpZGVzIHR3byBpbnN0YWxsYXRpb24gbW9kZXMuIFRoZSAi -Y2xhc3NpYyIgdmVuZG9yZWQgbW9kZSBpbnN0YWxscwphIGNvcHkgb2YgdmVy -c2lvbmVlciBpbnRvIHlvdXIgcmVwb3NpdG9yeS4gVGhlIGV4cGVyaW1lbnRh -bCBidWlsZC10aW1lIGRlcGVuZGVuY3kgbW9kZQppcyBpbnRlbmRlZCB0byBh -bGxvdyB5b3UgdG8gc2tpcCB0aGlzIHN0ZXAgYW5kIHNpbXBsaWZ5IHRoZSBw -cm9jZXNzIG9mIHVwZ3JhZGluZy4KCiMjIyBWZW5kb3JlZCBtb2RlCgoqIGBw -aXAgaW5zdGFsbCB2ZXJzaW9uZWVyYCB0byBzb21ld2hlcmUgaW4geW91ciAk -UEFUSAogICAqIEEgW2NvbmRhLWZvcmdlIHJlY2lwZV0oaHR0cHM6Ly9naXRo -dWIuY29tL2NvbmRhLWZvcmdlL3ZlcnNpb25lZXItZmVlZHN0b2NrKSBpcwog -ICAgIGF2YWlsYWJsZSwgc28geW91IGNhbiBhbHNvIHVzZSBgY29uZGEgaW5z -dGFsbCAtYyBjb25kYS1mb3JnZSB2ZXJzaW9uZWVyYAoqIGFkZCBhIGBbdG9v -bC52ZXJzaW9uZWVyXWAgc2VjdGlvbiB0byB5b3VyIGBweXByb2plY3QudG9t -bGAgb3IgYQogIGBbdmVyc2lvbmVlcl1gIHNlY3Rpb24gdG8geW91ciBgc2V0 -dXAuY2ZnYCAoc2VlIFtJbnN0YWxsXShJTlNUQUxMLm1kKSkKICAgKiBOb3Rl -IHRoYXQgeW91IHdpbGwgbmVlZCB0byBhZGQgYHRvbWxpOyBweXRob25fdmVy -c2lvbiA8ICIzLjExImAgdG8geW91cgogICAgIGJ1aWxkLXRpbWUgZGVwZW5k -ZW5jaWVzIGlmIHlvdSB1c2UgYHB5cHJvamVjdC50b21sYAoqIHJ1biBgdmVy -c2lvbmVlciBpbnN0YWxsIC0tdmVuZG9yYCBpbiB5b3VyIHNvdXJjZSB0cmVl -LCBjb21taXQgdGhlIHJlc3VsdHMKKiB2ZXJpZnkgdmVyc2lvbiBpbmZvcm1h -dGlvbiB3aXRoIGBweXRob24gc2V0dXAucHkgdmVyc2lvbmAKCiMjIyBCdWls -ZC10aW1lIGRlcGVuZGVuY3kgbW9kZQoKKiBgcGlwIGluc3RhbGwgdmVyc2lv -bmVlcmAgdG8gc29tZXdoZXJlIGluIHlvdXIgJFBBVEgKICAgKiBBIFtjb25k -YS1mb3JnZSByZWNpcGVdKGh0dHBzOi8vZ2l0aHViLmNvbS9jb25kYS1mb3Jn -ZS92ZXJzaW9uZWVyLWZlZWRzdG9jaykgaXMKICAgICBhdmFpbGFibGUsIHNv -IHlvdSBjYW4gYWxzbyB1c2UgYGNvbmRhIGluc3RhbGwgLWMgY29uZGEtZm9y -Z2UgdmVyc2lvbmVlcmAKKiBhZGQgYSBgW3Rvb2wudmVyc2lvbmVlcl1gIHNl -Y3Rpb24gdG8geW91ciBgcHlwcm9qZWN0LnRvbWxgIG9yIGEKICBgW3ZlcnNp -b25lZXJdYCBzZWN0aW9uIHRvIHlvdXIgYHNldHVwLmNmZ2AgKHNlZSBbSW5z -dGFsbF0oSU5TVEFMTC5tZCkpCiogYWRkIGB2ZXJzaW9uZWVyYCAod2l0aCBg -W3RvbWxdYCBleHRyYSwgaWYgY29uZmlndXJpbmcgaW4gYHB5cHJvamVjdC50 -b21sYCkKICB0byB0aGUgYHJlcXVpcmVzYCBrZXkgb2YgdGhlIGBidWlsZC1z -eXN0ZW1gIHRhYmxlIGluIGBweXByb2plY3QudG9tbGA6CiAgYGBgdG9tbAog -IFtidWlsZC1zeXN0ZW1dCiAgcmVxdWlyZXMgPSBbInNldHVwdG9vbHMiLCAi -dmVyc2lvbmVlclt0b21sXSJdCiAgYnVpbGQtYmFja2VuZCA9ICJzZXR1cHRv -b2xzLmJ1aWxkX21ldGEiCiAgYGBgCiogcnVuIGB2ZXJzaW9uZWVyIGluc3Rh -bGwgLS1uby12ZW5kb3JgIGluIHlvdXIgc291cmNlIHRyZWUsIGNvbW1pdCB0 -aGUgcmVzdWx0cwoqIHZlcmlmeSB2ZXJzaW9uIGluZm9ybWF0aW9uIHdpdGgg -YHB5dGhvbiBzZXR1cC5weSB2ZXJzaW9uYAoKIyMgVmVyc2lvbiBJZGVudGlm -aWVycwoKU291cmNlIHRyZWVzIGNvbWUgZnJvbSBhIHZhcmlldHkgb2YgcGxh -Y2VzOgoKKiBhIHZlcnNpb24tY29udHJvbCBzeXN0ZW0gY2hlY2tvdXQgKG1v -c3RseSB1c2VkIGJ5IGRldmVsb3BlcnMpCiogYSBuaWdodGx5IHRhcmJhbGws -IHByb2R1Y2VkIGJ5IGJ1aWxkIGF1dG9tYXRpb24KKiBhIHNuYXBzaG90IHRh -cmJhbGwsIHByb2R1Y2VkIGJ5IGEgd2ViLWJhc2VkIFZDUyBicm93c2VyLCBs -aWtlIGdpdGh1YidzCiAgInRhcmJhbGwgZnJvbSB0YWciIGZlYXR1cmUKKiBh -IHJlbGVhc2UgdGFyYmFsbCwgcHJvZHVjZWQgYnkgInNldHVwLnB5IHNkaXN0 -IiwgZGlzdHJpYnV0ZWQgdGhyb3VnaCBQeVBJCgpXaXRoaW4gZWFjaCBzb3Vy -Y2UgdHJlZSwgdGhlIHZlcnNpb24gaWRlbnRpZmllciAoZWl0aGVyIGEgc3Ry -aW5nIG9yIGEgbnVtYmVyLAp0aGlzIHRvb2wgaXMgZm9ybWF0LWFnbm9zdGlj -KSBjYW4gY29tZSBmcm9tIGEgdmFyaWV0eSBvZiBwbGFjZXM6CgoqIGFzayB0 -aGUgVkNTIHRvb2wgaXRzZWxmLCBlLmcuICJnaXQgZGVzY3JpYmUiIChmb3Ig -Y2hlY2tvdXRzKSwgd2hpY2gga25vd3MKICBhYm91dCByZWNlbnQgInRhZ3Mi -IGFuZCBhbiBhYnNvbHV0ZSByZXZpc2lvbi1pZAoqIHRoZSBuYW1lIG9mIHRo -ZSBkaXJlY3RvcnkgaW50byB3aGljaCB0aGUgdGFyYmFsbCB3YXMgdW5wYWNr -ZWQKKiBhbiBleHBhbmRlZCBWQ1Mga2V5d29yZCAoJElkJCwgZXRjKQoqIGEg -YF92ZXJzaW9uLnB5YCBjcmVhdGVkIGJ5IHNvbWUgZWFybGllciBidWlsZCBz -dGVwCgpGb3IgcmVsZWFzZWQgc29mdHdhcmUsIHRoZSB2ZXJzaW9uIGlkZW50 -aWZpZXIgaXMgY2xvc2VseSByZWxhdGVkIHRvIGEgVkNTCnRhZy4gU29tZSBw -cm9qZWN0cyB1c2UgdGFnIG5hbWVzIHRoYXQgaW5jbHVkZSBtb3JlIHRoYW4g -anVzdCB0aGUgdmVyc2lvbgpzdHJpbmcgKGUuZy4gIm15cHJvamVjdC0xLjIi -IGluc3RlYWQgb2YganVzdCAiMS4yIiksIGluIHdoaWNoIGNhc2UgdGhlIHRv -b2wKbmVlZHMgdG8gc3RyaXAgdGhlIHRhZyBwcmVmaXggdG8gZXh0cmFjdCB0 -aGUgdmVyc2lvbiBpZGVudGlmaWVyLiBGb3IKdW5yZWxlYXNlZCBzb2Z0d2Fy -ZSAoYmV0d2VlbiB0YWdzKSwgdGhlIHZlcnNpb24gaWRlbnRpZmllciBzaG91 -bGQgcHJvdmlkZQplbm91Z2ggaW5mb3JtYXRpb24gdG8gaGVscCBkZXZlbG9w -ZXJzIHJlY3JlYXRlIHRoZSBzYW1lIHRyZWUsIHdoaWxlIGFsc28KZ2l2aW5n -IHRoZW0gYW4gaWRlYSBvZiByb3VnaGx5IGhvdyBvbGQgdGhlIHRyZWUgaXMg -KGFmdGVyIHZlcnNpb24gMS4yLCBiZWZvcmUKdmVyc2lvbiAxLjMpLiBNYW55 -IFZDUyBzeXN0ZW1zIGNhbiByZXBvcnQgYSBkZXNjcmlwdGlvbiB0aGF0IGNh -cHR1cmVzIHRoaXMsCmZvciBleGFtcGxlIGBnaXQgZGVzY3JpYmUgLS10YWdz -IC0tZGlydHkgLS1hbHdheXNgIHJlcG9ydHMgdGhpbmdzIGxpa2UKIjAuNy0x -LWc1NzRhYjk4LWRpcnR5IiB0byBpbmRpY2F0ZSB0aGF0IHRoZSBjaGVja291 -dCBpcyBvbmUgcmV2aXNpb24gcGFzdCB0aGUKMC43IHRhZywgaGFzIGEgdW5p -cXVlIHJldmlzaW9uIGlkIG9mICI1NzRhYjk4IiwgYW5kIGlzICJkaXJ0eSIg -KGl0IGhhcwp1bmNvbW1pdHRlZCBjaGFuZ2VzKS4KClRoZSB2ZXJzaW9uIGlk -ZW50aWZpZXIgaXMgdXNlZCBmb3IgbXVsdGlwbGUgcHVycG9zZXM6CgoqIHRv -IGFsbG93IHRoZSBtb2R1bGUgdG8gc2VsZi1pZGVudGlmeSBpdHMgdmVyc2lv -bjogYG15cHJvamVjdC5fX3ZlcnNpb25fX2AKKiB0byBjaG9vc2UgYSBuYW1l -IGFuZCBwcmVmaXggZm9yIGEgJ3NldHVwLnB5IHNkaXN0JyB0YXJiYWxsCgoj -IyBUaGVvcnkgb2YgT3BlcmF0aW9uCgpWZXJzaW9uZWVyIHdvcmtzIGJ5IGFk -ZGluZyBhIHNwZWNpYWwgYF92ZXJzaW9uLnB5YCBmaWxlIGludG8geW91ciBz -b3VyY2UKdHJlZSwgd2hlcmUgeW91ciBgX19pbml0X18ucHlgIGNhbiBpbXBv -cnQgaXQuIFRoaXMgYF92ZXJzaW9uLnB5YCBrbm93cyBob3cgdG8KZHluYW1p -Y2FsbHkgYXNrIHRoZSBWQ1MgdG9vbCBmb3IgdmVyc2lvbiBpbmZvcm1hdGlv -biBhdCBpbXBvcnQgdGltZS4KCmBfdmVyc2lvbi5weWAgYWxzbyBjb250YWlu -cyBgJFJldmlzaW9uJGAgbWFya2VycywgYW5kIHRoZSBpbnN0YWxsYXRpb24K -cHJvY2VzcyBtYXJrcyBgX3ZlcnNpb24ucHlgIHRvIGhhdmUgdGhpcyBtYXJr -ZXIgcmV3cml0dGVuIHdpdGggYSB0YWcgbmFtZQpkdXJpbmcgdGhlIGBnaXQg -YXJjaGl2ZWAgY29tbWFuZC4gQXMgYSByZXN1bHQsIGdlbmVyYXRlZCB0YXJi -YWxscyB3aWxsCmNvbnRhaW4gZW5vdWdoIGluZm9ybWF0aW9uIHRvIGdldCB0 -aGUgcHJvcGVyIHZlcnNpb24uCgpUbyBhbGxvdyBgc2V0dXAucHlgIHRvIGNv -bXB1dGUgYSB2ZXJzaW9uIHRvbywgYSBgdmVyc2lvbmVlci5weWAgaXMgYWRk -ZWQgdG8KdGhlIHRvcCBsZXZlbCBvZiB5b3VyIHNvdXJjZSB0cmVlLCBuZXh0 -IHRvIGBzZXR1cC5weWAgYW5kIHRoZSBgc2V0dXAuY2ZnYAp0aGF0IGNvbmZp -Z3VyZXMgaXQuIFRoaXMgb3ZlcnJpZGVzIHNldmVyYWwgZGlzdHV0aWxzL3Nl -dHVwdG9vbHMgY29tbWFuZHMgdG8KY29tcHV0ZSB0aGUgdmVyc2lvbiB3aGVu -IGludm9rZWQsIGFuZCBjaGFuZ2VzIGBzZXR1cC5weSBidWlsZGAgYW5kIGBz -ZXR1cC5weQpzZGlzdGAgdG8gcmVwbGFjZSBgX3ZlcnNpb24ucHlgIHdpdGgg -YSBzbWFsbCBzdGF0aWMgZmlsZSB0aGF0IGNvbnRhaW5zIGp1c3QKdGhlIGdl -bmVyYXRlZCB2ZXJzaW9uIGRhdGEuCgojIyBJbnN0YWxsYXRpb24KClNlZSBb -SU5TVEFMTC5tZF0oLi9JTlNUQUxMLm1kKSBmb3IgZGV0YWlsZWQgaW5zdGFs -bGF0aW9uIGluc3RydWN0aW9ucy4KCiMjIFZlcnNpb24tU3RyaW5nIEZsYXZv -cnMKCkNvZGUgd2hpY2ggdXNlcyBWZXJzaW9uZWVyIGNhbiBsZWFybiBhYm91 -dCBpdHMgdmVyc2lvbiBzdHJpbmcgYXQgcnVudGltZSBieQppbXBvcnRpbmcg -YF92ZXJzaW9uYCBmcm9tIHlvdXIgbWFpbiBgX19pbml0X18ucHlgIGZpbGUg -YW5kIHJ1bm5pbmcgdGhlCmBnZXRfdmVyc2lvbnMoKWAgZnVuY3Rpb24uIEZy -b20gdGhlICJvdXRzaWRlIiAoZS5nLiBpbiBgc2V0dXAucHlgKSwgeW91IGNh -bgppbXBvcnQgdGhlIHRvcC1sZXZlbCBgdmVyc2lvbmVlci5weWAgYW5kIHJ1 -biBgZ2V0X3ZlcnNpb25zKClgLgoKQm90aCBmdW5jdGlvbnMgcmV0dXJuIGEg -ZGljdGlvbmFyeSB3aXRoIGRpZmZlcmVudCBmbGF2b3JzIG9mIHZlcnNpb24K -aW5mb3JtYXRpb246CgoqIGBbJ3ZlcnNpb24nXWA6IEEgY29uZGVuc2VkIHZl -cnNpb24gc3RyaW5nLCByZW5kZXJlZCB1c2luZyB0aGUgc2VsZWN0ZWQKICBz -dHlsZS4gVGhpcyBpcyB0aGUgbW9zdCBjb21tb25seSB1c2VkIHZhbHVlIGZv -ciB0aGUgcHJvamVjdCdzIHZlcnNpb24KICBzdHJpbmcuIFRoZSBkZWZhdWx0 -ICJwZXA0NDAiIHN0eWxlIHlpZWxkcyBzdHJpbmdzIGxpa2UgYDAuMTFgLAog -IGAwLjExKzIuZzEwNzZjOTdgLCBvciBgMC4xMSsyLmcxMDc2Yzk3LmRpcnR5 -YC4gU2VlIHRoZSAiU3R5bGVzIiBzZWN0aW9uCiAgYmVsb3cgZm9yIGFsdGVy -bmF0aXZlIHN0eWxlcy4KCiogYFsnZnVsbC1yZXZpc2lvbmlkJ11gOiBkZXRh -aWxlZCByZXZpc2lvbiBpZGVudGlmaWVyLiBGb3IgR2l0LCB0aGlzIGlzIHRo -ZQogIGZ1bGwgU0hBMSBjb21taXQgaWQsIGUuZy4gIjEwNzZjOTc4YThkM2Nm -YzcwZjQwOGZlNTk3NGFhNmMwOTJjOTQ5YWMiLgoKKiBgWydkYXRlJ11gOiBE -YXRlIGFuZCB0aW1lIG9mIHRoZSBsYXRlc3QgYEhFQURgIGNvbW1pdC4gRm9y -IEdpdCwgaXQgaXMgdGhlCiAgY29tbWl0IGRhdGUgaW4gSVNPIDg2MDEgZm9y -bWF0LiBUaGlzIHdpbGwgYmUgTm9uZSBpZiB0aGUgZGF0ZSBpcyBub3QKICBh -dmFpbGFibGUuCgoqIGBbJ2RpcnR5J11gOiBhIGJvb2xlYW4sIFRydWUgaWYg -dGhlIHRyZWUgaGFzIHVuY29tbWl0dGVkIGNoYW5nZXMuIE5vdGUgdGhhdAog -IHRoaXMgaXMgb25seSBhY2N1cmF0ZSBpZiBydW4gaW4gYSBWQ1MgY2hlY2tv -dXQsIG90aGVyd2lzZSBpdCBpcyBsaWtlbHkgdG8KICBiZSBGYWxzZSBvciBO -b25lCgoqIGBbJ2Vycm9yJ11gOiBpZiB0aGUgdmVyc2lvbiBzdHJpbmcgY291 -bGQgbm90IGJlIGNvbXB1dGVkLCB0aGlzIHdpbGwgYmUgc2V0CiAgdG8gYSBz -dHJpbmcgZGVzY3JpYmluZyB0aGUgcHJvYmxlbSwgb3RoZXJ3aXNlIGl0IHdp -bGwgYmUgTm9uZS4gSXQgbWF5IGJlCiAgdXNlZnVsIHRvIHRocm93IGFuIGV4 -Y2VwdGlvbiBpbiBzZXR1cC5weSBpZiB0aGlzIGlzIHNldCwgdG8gYXZvaWQg -ZS5nLgogIGNyZWF0aW5nIHRhcmJhbGxzIHdpdGggYSB2ZXJzaW9uIHN0cmlu -ZyBvZiAidW5rbm93biIuCgpTb21lIHZhcmlhbnRzIGFyZSBtb3JlIHVzZWZ1 -bCB0aGFuIG90aGVycy4gSW5jbHVkaW5nIGBmdWxsLXJldmlzaW9uaWRgIGlu -IGEKYnVnIHJlcG9ydCBzaG91bGQgYWxsb3cgZGV2ZWxvcGVycyB0byByZWNv -bnN0cnVjdCB0aGUgZXhhY3QgY29kZSBiZWluZyB0ZXN0ZWQKKG9yIGluZGlj -YXRlIHRoZSBwcmVzZW5jZSBvZiBsb2NhbCBjaGFuZ2VzIHRoYXQgc2hvdWxk -IGJlIHNoYXJlZCB3aXRoIHRoZQpkZXZlbG9wZXJzKS4gYHZlcnNpb25gIGlz -IHN1aXRhYmxlIGZvciBkaXNwbGF5IGluIGFuICJhYm91dCIgYm94IG9yIGEg -Q0xJCmAtLXZlcnNpb25gIG91dHB1dDogaXQgY2FuIGJlIGVhc2lseSBjb21w -YXJlZCBhZ2FpbnN0IHJlbGVhc2Ugbm90ZXMgYW5kIGxpc3RzCm9mIGJ1Z3Mg -Zml4ZWQgaW4gdmFyaW91cyByZWxlYXNlcy4KClRoZSBpbnN0YWxsZXIgYWRk -cyB0aGUgZm9sbG93aW5nIHRleHQgdG8geW91ciBgX19pbml0X18ucHlgIHRv -IHBsYWNlIGEgYmFzaWMKdmVyc2lvbiBpbiBgWU9VUlBST0pFQ1QuX192ZXJz -aW9uX19gOgoKICAgIGZyb20gLl92ZXJzaW9uIGltcG9ydCBnZXRfdmVyc2lv -bnMKICAgIF9fdmVyc2lvbl9fID0gZ2V0X3ZlcnNpb25zKClbJ3ZlcnNpb24n -XQogICAgZGVsIGdldF92ZXJzaW9ucwoKIyMgU3R5bGVzCgpUaGUgc2V0dXAu -Y2ZnIGBzdHlsZT1gIGNvbmZpZ3VyYXRpb24gY29udHJvbHMgaG93IHRoZSBW -Q1MgaW5mb3JtYXRpb24gaXMKcmVuZGVyZWQgaW50byBhIHZlcnNpb24gc3Ry -aW5nLgoKVGhlIGRlZmF1bHQgc3R5bGUsICJwZXA0NDAiLCBwcm9kdWNlcyBh -IFBFUDQ0MC1jb21wbGlhbnQgc3RyaW5nLCBlcXVhbCB0byB0aGUKdW4tcHJl -Zml4ZWQgdGFnIG5hbWUgZm9yIGFjdHVhbCByZWxlYXNlcywgYW5kIGNvbnRh -aW5pbmcgYW4gYWRkaXRpb25hbCAibG9jYWwKdmVyc2lvbiIgc2VjdGlvbiB3 -aXRoIG1vcmUgZGV0YWlsIGZvciBpbi1iZXR3ZWVuIGJ1aWxkcy4gRm9yIEdp -dCwgdGhpcyBpcwpUQUdbK0RJU1RBTkNFLmdIRVhbLmRpcnR5XV0gLCB1c2lu -ZyBpbmZvcm1hdGlvbiBmcm9tIGBnaXQgZGVzY3JpYmUgLS10YWdzCi0tZGly -dHkgLS1hbHdheXNgLiBGb3IgZXhhbXBsZSAiMC4xMSsyLmcxMDc2Yzk3LmRp -cnR5IiBpbmRpY2F0ZXMgdGhhdCB0aGUKdHJlZSBpcyBsaWtlIHRoZSAiMTA3 -NmM5NyIgY29tbWl0IGJ1dCBoYXMgdW5jb21taXR0ZWQgY2hhbmdlcyAoIi5k -aXJ0eSIpLCBhbmQKdGhhdCB0aGlzIGNvbW1pdCBpcyB0d28gcmV2aXNpb25z -ICgiKzIiKSBiZXlvbmQgdGhlICIwLjExIiB0YWcuIEZvciByZWxlYXNlZApz -b2Z0d2FyZSAoZXhhY3RseSBlcXVhbCB0byBhIGtub3duIHRhZyksIHRoZSBp -ZGVudGlmaWVyIHdpbGwgb25seSBjb250YWluIHRoZQpzdHJpcHBlZCB0YWcs -IGUuZy4gIjAuMTEiLgoKT3RoZXIgc3R5bGVzIGFyZSBhdmFpbGFibGUuIFNl -ZSBbZGV0YWlscy5tZF0oZGV0YWlscy5tZCkgaW4gdGhlIFZlcnNpb25lZXIK -c291cmNlIHRyZWUgZm9yIGRlc2NyaXB0aW9ucy4KCiMjIERlYnVnZ2luZwoK -VmVyc2lvbmVlciB0cmllcyB0byBhdm9pZCBmYXRhbCBlcnJvcnM6IGlmIHNv -bWV0aGluZyBnb2VzIHdyb25nLCBpdCB3aWxsIHRlbmQKdG8gcmV0dXJuIGEg -dmVyc2lvbiBvZiAiMCt1bmtub3duIi4gVG8gaW52ZXN0aWdhdGUgdGhlIHBy -b2JsZW0sIHJ1biBgc2V0dXAucHkKdmVyc2lvbmAsIHdoaWNoIHdpbGwgcnVu -IHRoZSB2ZXJzaW9uLWxvb2t1cCBjb2RlIGluIGEgdmVyYm9zZSBtb2RlLCBh -bmQgd2lsbApkaXNwbGF5IHRoZSBmdWxsIGNvbnRlbnRzIG9mIGBnZXRfdmVy -c2lvbnMoKWAgKGluY2x1ZGluZyB0aGUgYGVycm9yYCBzdHJpbmcsCndoaWNo -IG1heSBoZWxwIGlkZW50aWZ5IHdoYXQgd2VudCB3cm9uZykuCgojIyBLbm93 -biBMaW1pdGF0aW9ucwoKU29tZSBzaXR1YXRpb25zIGFyZSBrbm93biB0byBj -YXVzZSBwcm9ibGVtcyBmb3IgVmVyc2lvbmVlci4gVGhpcyBkZXRhaWxzIHRo -ZQptb3N0IHNpZ25pZmljYW50IG9uZXMuIE1vcmUgY2FuIGJlIGZvdW5kIG9u -IEdpdGh1YgpbaXNzdWVzIHBhZ2VdKGh0dHBzOi8vZ2l0aHViLmNvbS9weXRo -b24tdmVyc2lvbmVlci9weXRob24tdmVyc2lvbmVlci9pc3N1ZXMpLgoKIyMj -IFN1YnByb2plY3RzCgpWZXJzaW9uZWVyIGhhcyBsaW1pdGVkIHN1cHBvcnQg -Zm9yIHNvdXJjZSB0cmVlcyBpbiB3aGljaCBgc2V0dXAucHlgIGlzIG5vdCBp -bgp0aGUgcm9vdCBkaXJlY3RvcnkgKGUuZy4gYHNldHVwLnB5YCBhbmQgYC5n -aXQvYCBhcmUgKm5vdCogc2libGluZ3MpLiBUaGUgYXJlCnR3byBjb21tb24g -cmVhc29ucyB3aHkgYHNldHVwLnB5YCBtaWdodCBub3QgYmUgaW4gdGhlIHJv -b3Q6CgoqIFNvdXJjZSB0cmVlcyB3aGljaCBjb250YWluIG11bHRpcGxlIHN1 -YnByb2plY3RzLCBzdWNoIGFzCiAgW0J1aWxkYm90XShodHRwczovL2dpdGh1 -Yi5jb20vYnVpbGRib3QvYnVpbGRib3QpLCB3aGljaCBjb250YWlucyBib3Ro -CiAgIm1hc3RlciIgYW5kICJzbGF2ZSIgc3VicHJvamVjdHMsIGVhY2ggd2l0 -aCB0aGVpciBvd24gYHNldHVwLnB5YCwKICBgc2V0dXAuY2ZnYCwgYW5kIGB0 -b3guaW5pYC4gUHJvamVjdHMgbGlrZSB0aGVzZSBwcm9kdWNlIG11bHRpcGxl -IFB5UEkKICBkaXN0cmlidXRpb25zIChhbmQgdXBsb2FkIG11bHRpcGxlIGlu -ZGVwZW5kZW50bHktaW5zdGFsbGFibGUgdGFyYmFsbHMpLgoqIFNvdXJjZSB0 -cmVlcyB3aG9zZSBtYWluIHB1cnBvc2UgaXMgdG8gY29udGFpbiBhIEMgbGli -cmFyeSwgYnV0IHdoaWNoIGFsc28KICBwcm92aWRlIGJpbmRpbmdzIHRvIFB5 -dGhvbiAoYW5kIHBlcmhhcHMgb3RoZXIgbGFuZ3VhZ2VzKSBpbiBzdWJkaXJl -Y3Rvcmllcy4KClZlcnNpb25lZXIgd2lsbCBsb29rIGZvciBgLmdpdGAgaW4g -cGFyZW50IGRpcmVjdG9yaWVzLCBhbmQgbW9zdCBvcGVyYXRpb25zCnNob3Vs -ZCBnZXQgdGhlIHJpZ2h0IHZlcnNpb24gc3RyaW5nLiBIb3dldmVyIGBwaXBg -IGFuZCBgc2V0dXB0b29sc2AgaGF2ZSBidWdzCmFuZCBpbXBsZW1lbnRhdGlv -biBkZXRhaWxzIHdoaWNoIGZyZXF1ZW50bHkgY2F1c2UgYHBpcCBpbnN0YWxs -IC5gIGZyb20gYQpzdWJwcm9qZWN0IGRpcmVjdG9yeSB0byBmYWlsIHRvIGZp -bmQgYSBjb3JyZWN0IHZlcnNpb24gc3RyaW5nIChzbyBpdCB1c3VhbGx5CmRl -ZmF1bHRzIHRvIGAwK3Vua25vd25gKS4KCmBwaXAgaW5zdGFsbCAtLWVkaXRh -YmxlIC5gIHNob3VsZCB3b3JrIGNvcnJlY3RseS4gYHNldHVwLnB5IGluc3Rh -bGxgIG1pZ2h0CndvcmsgdG9vLgoKUGlwLTguMS4xIGlzIGtub3duIHRvIGhh -dmUgdGhpcyBwcm9ibGVtLCBidXQgaG9wZWZ1bGx5IGl0IHdpbGwgZ2V0IGZp -eGVkIGluCnNvbWUgbGF0ZXIgdmVyc2lvbi4KCltCdWcgIzM4XShodHRwczov -L2dpdGh1Yi5jb20vcHl0aG9uLXZlcnNpb25lZXIvcHl0aG9uLXZlcnNpb25l -ZXIvaXNzdWVzLzM4KSBpcyB0cmFja2luZwp0aGlzIGlzc3VlLiBUaGUgZGlz -Y3Vzc2lvbiBpbgpbUFIgIzYxXShodHRwczovL2dpdGh1Yi5jb20vcHl0aG9u -LXZlcnNpb25lZXIvcHl0aG9uLXZlcnNpb25lZXIvcHVsbC82MSkgZGVzY3Jp -YmVzIHRoZQppc3N1ZSBmcm9tIHRoZSBWZXJzaW9uZWVyIHNpZGUgaW4gbW9y -ZSBkZXRhaWwuCltwaXAgUFIjMzE3Nl0oaHR0cHM6Ly9naXRodWIuY29tL3B5 -cGEvcGlwL3B1bGwvMzE3NikgYW5kCltwaXAgUFIjMzYxNV0oaHR0cHM6Ly9n -aXRodWIuY29tL3B5cGEvcGlwL3B1bGwvMzYxNSkgY29udGFpbiB3b3JrIHRv -IGltcHJvdmUKcGlwIHRvIGxldCBWZXJzaW9uZWVyIHdvcmsgY29ycmVjdGx5 -LgoKVmVyc2lvbmVlci0wLjE2IGFuZCBlYXJsaWVyIG9ubHkgbG9va2VkIGZv -ciBhIGAuZ2l0YCBkaXJlY3RvcnkgbmV4dCB0byB0aGUKYHNldHVwLmNmZ2As -IHNvIHN1YnByb2plY3RzIHdlcmUgY29tcGxldGVseSB1bnN1cHBvcnRlZCB3 -aXRoIHRob3NlIHJlbGVhc2VzLgoKIyMjIEVkaXRhYmxlIGluc3RhbGxzIHdp -dGggc2V0dXB0b29scyA8PSAxOC41Cgpgc2V0dXAucHkgZGV2ZWxvcGAgYW5k -IGBwaXAgaW5zdGFsbCAtLWVkaXRhYmxlIC5gIGFsbG93IHlvdSB0byBpbnN0 -YWxsIGEKcHJvamVjdCBpbnRvIGEgdmlydHVhbGVudiBvbmNlLCB0aGVuIGNv -bnRpbnVlIGVkaXRpbmcgdGhlIHNvdXJjZSBjb2RlIChhbmQKdGVzdCkgd2l0 -aG91dCByZS1pbnN0YWxsaW5nIGFmdGVyIGV2ZXJ5IGNoYW5nZS4KCiJFbnRy -eS1wb2ludCBzY3JpcHRzIiAoYHNldHVwKGVudHJ5X3BvaW50cz17ImNvbnNv -bGVfc2NyaXB0cyI6IC4ufSlgKSBhcmUgYQpjb252ZW5pZW50IHdheSB0byBz -cGVjaWZ5IGV4ZWN1dGFibGUgc2NyaXB0cyB0aGF0IHNob3VsZCBiZSBpbnN0 -YWxsZWQgYWxvbmcKd2l0aCB0aGUgcHl0aG9uIHBhY2thZ2UuCgpUaGVzZSBi -b3RoIHdvcmsgYXMgZXhwZWN0ZWQgd2hlbiB1c2luZyBtb2Rlcm4gc2V0dXB0 -b29scy4gV2hlbiB1c2luZwpzZXR1cHRvb2xzLTE4LjUgb3IgZWFybGllciwg -aG93ZXZlciwgY2VydGFpbiBvcGVyYXRpb25zIHdpbGwgY2F1c2UKYHBrZ19y -ZXNvdXJjZXMuRGlzdHJpYnV0aW9uTm90Rm91bmRgIGVycm9ycyB3aGVuIHJ1 -bm5pbmcgdGhlIGVudHJ5cG9pbnQKc2NyaXB0LCB3aGljaCBtdXN0IGJlIHJl -c29sdmVkIGJ5IHJlLWluc3RhbGxpbmcgdGhlIHBhY2thZ2UuIFRoaXMgaGFw -cGVucwp3aGVuIHRoZSBpbnN0YWxsIGhhcHBlbnMgd2l0aCBvbmUgdmVyc2lv -biwgdGhlbiB0aGUgZWdnX2luZm8gZGF0YSBpcwpyZWdlbmVyYXRlZCB3aGls -ZSBhIGRpZmZlcmVudCB2ZXJzaW9uIGlzIGNoZWNrZWQgb3V0LiBNYW55IHNl -dHVwLnB5IGNvbW1hbmRzCmNhdXNlIGVnZ19pbmZvIHRvIGJlIHJlYnVpbHQg -KGluY2x1ZGluZyBgc2Rpc3RgLCBgd2hlZWxgLCBhbmQgaW5zdGFsbGluZyBp -bnRvCmEgZGlmZmVyZW50IHZpcnR1YWxlbnYpLCBzbyB0aGlzIGNhbiBiZSBz -dXJwcmlzaW5nLgoKW0J1ZyAjODNdKGh0dHBzOi8vZ2l0aHViLmNvbS9weXRo -b24tdmVyc2lvbmVlci9weXRob24tdmVyc2lvbmVlci9pc3N1ZXMvODMpIGRl -c2NyaWJlcwp0aGlzIG9uZSwgYnV0IHVwZ3JhZGluZyB0byBhIG5ld2VyIHZl -cnNpb24gb2Ygc2V0dXB0b29scyBzaG91bGQgcHJvYmFibHkKcmVzb2x2ZSBp -dC4KCgojIyBVcGRhdGluZyBWZXJzaW9uZWVyCgpUbyB1cGdyYWRlIHlvdXIg -cHJvamVjdCB0byBhIG5ldyByZWxlYXNlIG9mIFZlcnNpb25lZXIsIGRvIHRo -ZSBmb2xsb3dpbmc6CgoqIGluc3RhbGwgdGhlIG5ldyBWZXJzaW9uZWVyIChg -cGlwIGluc3RhbGwgLVUgdmVyc2lvbmVlcmAgb3IgZXF1aXZhbGVudCkKKiBl -ZGl0IGBzZXR1cC5jZmdgIGFuZCBgcHlwcm9qZWN0LnRvbWxgLCBpZiBuZWNl -c3NhcnksCiAgdG8gaW5jbHVkZSBhbnkgbmV3IGNvbmZpZ3VyYXRpb24gc2V0 -dGluZ3MgaW5kaWNhdGVkIGJ5IHRoZSByZWxlYXNlIG5vdGVzLgogIFNlZSBb -VVBHUkFESU5HXSguL1VQR1JBRElORy5tZCkgZm9yIGRldGFpbHMuCiogcmUt -cnVuIGB2ZXJzaW9uZWVyIGluc3RhbGwgLS1bbm8tXXZlbmRvcmAgaW4geW91 -ciBzb3VyY2UgdHJlZSwgdG8gcmVwbGFjZQogIGBTUkMvX3ZlcnNpb24ucHlg -CiogY29tbWl0IGFueSBjaGFuZ2VkIGZpbGVzCgojIyBGdXR1cmUgRGlyZWN0 -aW9ucwoKVGhpcyB0b29sIGlzIGRlc2lnbmVkIHRvIG1ha2UgaXQgZWFzaWx5 -IGV4dGVuZGVkIHRvIG90aGVyIHZlcnNpb24tY29udHJvbApzeXN0ZW1zOiBh -bGwgVkNTLXNwZWNpZmljIGNvbXBvbmVudHMgYXJlIGluIHNlcGFyYXRlIGRp -cmVjdG9yaWVzIGxpa2UKc3JjL2dpdC8gLiBUaGUgdG9wLWxldmVsIGB2ZXJz -aW9uZWVyLnB5YCBzY3JpcHQgaXMgYXNzZW1ibGVkIGZyb20gdGhlc2UKY29t -cG9uZW50cyBieSBydW5uaW5nIG1ha2UtdmVyc2lvbmVlci5weSAuIEluIHRo -ZSBmdXR1cmUsIG1ha2UtdmVyc2lvbmVlci5weQp3aWxsIHRha2UgYSBWQ1Mg -bmFtZSBhcyBhbiBhcmd1bWVudCwgYW5kIHdpbGwgY29uc3RydWN0IGEgdmVy -c2lvbiBvZgpgdmVyc2lvbmVlci5weWAgdGhhdCBpcyBzcGVjaWZpYyB0byB0 -aGUgZ2l2ZW4gVkNTLiBJdCBtaWdodCBhbHNvIHRha2UgdGhlCmNvbmZpZ3Vy -YXRpb24gYXJndW1lbnRzIHRoYXQgYXJlIGN1cnJlbnRseSBwcm92aWRlZCBt -YW51YWxseSBkdXJpbmcKaW5zdGFsbGF0aW9uIGJ5IGVkaXRpbmcgc2V0dXAu -cHkgLiBBbHRlcm5hdGl2ZWx5LCBpdCBtaWdodCBnbyB0aGUgb3RoZXIKZGly -ZWN0aW9uIGFuZCBpbmNsdWRlIGNvZGUgZnJvbSBhbGwgc3VwcG9ydGVkIFZD -UyBzeXN0ZW1zLCByZWR1Y2luZyB0aGUKbnVtYmVyIG9mIGludGVybWVkaWF0 -ZSBzY3JpcHRzLgoKIyMgU2ltaWxhciBwcm9qZWN0cwoKKiBbc2V0dXB0b29s -c19zY21dKGh0dHBzOi8vZ2l0aHViLmNvbS9weXBhL3NldHVwdG9vbHNfc2Nt -LykgLSBhIG5vbi12ZW5kb3JlZCBidWlsZC10aW1lCiAgZGVwZW5kZW5jeQoq -IFttaW52ZXJdKGh0dHBzOi8vZ2l0aHViLmNvbS9qYndlc3Rvbi9taW5pdmVy -KSAtIGEgbGlnaHR3ZWlnaHQgcmVpbXBsZW1lbnRhdGlvbiBvZgogIHZlcnNp -b25lZXIKKiBbdmVyc2lvbmluZ2l0XShodHRwczovL2dpdGh1Yi5jb20vandv -ZGRlci92ZXJzaW9uaW5naXQpIC0gYSBQRVAgNTE4LWJhc2VkIHNldHVwdG9v -bHMKICBwbHVnaW4KCiMjIExpY2Vuc2UKClRvIG1ha2UgVmVyc2lvbmVlciBl -YXNpZXIgdG8gZW1iZWQsIGFsbCBpdHMgY29kZSBpcyBkZWRpY2F0ZWQgdG8g -dGhlIHB1YmxpYwpkb21haW4uIFRoZSBgX3ZlcnNpb24ucHlgIHRoYXQgaXQg -Y3JlYXRlcyBpcyBhbHNvIGluIHRoZSBwdWJsaWMgZG9tYWluLgpTcGVjaWZp -Y2FsbHksIGJvdGggYXJlIHJlbGVhc2VkIHVuZGVyIHRoZSAiVW5saWNlbnNl -IiwgYXMgZGVzY3JpYmVkIGluCmh0dHBzOi8vdW5saWNlbnNlLm9yZy8uCgpb -cHlwaS1pbWFnZV06IGh0dHBzOi8vaW1nLnNoaWVsZHMuaW8vcHlwaS92L3Zl -cnNpb25lZXIuc3ZnCltweXBpLXVybF06IGh0dHBzOi8vcHlwaS5weXRob24u -b3JnL3B5cGkvdmVyc2lvbmVlci8KW3RyYXZpcy1pbWFnZV06Cmh0dHBzOi8v -aW1nLnNoaWVsZHMuaW8vdHJhdmlzL2NvbS9weXRob24tdmVyc2lvbmVlci9w -eXRob24tdmVyc2lvbmVlci5zdmcKW3RyYXZpcy11cmxdOiBodHRwczovL3Ry -YXZpcy1jaS5jb20vZ2l0aHViL3B5dGhvbi12ZXJzaW9uZWVyL3B5dGhvbi12 -ZXJzaW9uZWVyCgoiIiIKIyBweWxpbnQ6ZGlzYWJsZT1pbnZhbGlkLW5hbWUs -aW1wb3J0LW91dHNpZGUtdG9wbGV2ZWwsbWlzc2luZy1mdW5jdGlvbi1kb2Nz -dHJpbmcKIyBweWxpbnQ6ZGlzYWJsZT1taXNzaW5nLWNsYXNzLWRvY3N0cmlu -Zyx0b28tbWFueS1icmFuY2hlcyx0b28tbWFueS1zdGF0ZW1lbnRzCiMgcHls -aW50OmRpc2FibGU9cmFpc2UtbWlzc2luZy1mcm9tLHRvby1tYW55LWxpbmVz -LHRvby1tYW55LWxvY2FscyxpbXBvcnQtZXJyb3IKIyBweWxpbnQ6ZGlzYWJs -ZT10b28tZmV3LXB1YmxpYy1tZXRob2RzLHJlZGVmaW5lZC1vdXRlci1uYW1l -LGNvbnNpZGVyLXVzaW5nLXdpdGgKIyBweWxpbnQ6ZGlzYWJsZT1hdHRyaWJ1 -dGUtZGVmaW5lZC1vdXRzaWRlLWluaXQsdG9vLW1hbnktYXJndW1lbnRzCgpp -bXBvcnQgY29uZmlncGFyc2VyCmltcG9ydCBlcnJubwppbXBvcnQganNvbgpp -bXBvcnQgb3MKaW1wb3J0IHJlCmltcG9ydCBzdWJwcm9jZXNzCmltcG9ydCBz -eXMKZnJvbSBwYXRobGliIGltcG9ydCBQYXRoCmZyb20gdHlwaW5nIGltcG9y -dCBBbnksIENhbGxhYmxlLCBjYXN0LCBEaWN0LCBMaXN0LCBPcHRpb25hbCwg -VHVwbGUsIFVuaW9uCmZyb20gdHlwaW5nIGltcG9ydCBOb1JldHVybgppbXBv -cnQgZnVuY3Rvb2xzCgpoYXZlX3RvbWxsaWIgPSBUcnVlCmlmIHN5cy52ZXJz -aW9uX2luZm8gPj0gKDMsIDExKToKICAgIGltcG9ydCB0b21sbGliCmVsc2U6 -CiAgICB0cnk6CiAgICAgICAgaW1wb3J0IHRvbWxpIGFzIHRvbWxsaWIKICAg -IGV4Y2VwdCBJbXBvcnRFcnJvcjoKICAgICAgICBoYXZlX3RvbWxsaWIgPSBG -YWxzZQoKCmNsYXNzIFZlcnNpb25lZXJDb25maWc6CiAgICAiIiJDb250YWlu -ZXIgZm9yIFZlcnNpb25lZXIgY29uZmlndXJhdGlvbiBwYXJhbWV0ZXJzLiIi -IgoKICAgIFZDUzogc3RyCiAgICBzdHlsZTogc3RyCiAgICB0YWdfcHJlZml4 -OiBzdHIKICAgIHZlcnNpb25maWxlX3NvdXJjZTogc3RyCiAgICB2ZXJzaW9u -ZmlsZV9idWlsZDogT3B0aW9uYWxbc3RyXQogICAgcGFyZW50ZGlyX3ByZWZp -eDogT3B0aW9uYWxbc3RyXQogICAgdmVyYm9zZTogT3B0aW9uYWxbYm9vbF0K -CgpkZWYgZ2V0X3Jvb3QoKSAtPiBzdHI6CiAgICAiIiJHZXQgdGhlIHByb2pl -Y3Qgcm9vdCBkaXJlY3RvcnkuCgogICAgV2UgcmVxdWlyZSB0aGF0IGFsbCBj -b21tYW5kcyBhcmUgcnVuIGZyb20gdGhlIHByb2plY3Qgcm9vdCwgaS5lLiB0 -aGUKICAgIGRpcmVjdG9yeSB0aGF0IGNvbnRhaW5zIHNldHVwLnB5LCBzZXR1 -cC5jZmcsIGFuZCB2ZXJzaW9uZWVyLnB5IC4KICAgICIiIgogICAgcm9vdCA9 -IG9zLnBhdGgucmVhbHBhdGgob3MucGF0aC5hYnNwYXRoKG9zLmdldGN3ZCgp -KSkKICAgIHNldHVwX3B5ID0gb3MucGF0aC5qb2luKHJvb3QsICJzZXR1cC5w -eSIpCiAgICBweXByb2plY3RfdG9tbCA9IG9zLnBhdGguam9pbihyb290LCAi -cHlwcm9qZWN0LnRvbWwiKQogICAgdmVyc2lvbmVlcl9weSA9IG9zLnBhdGgu -am9pbihyb290LCAidmVyc2lvbmVlci5weSIpCiAgICBpZiBub3QgKAogICAg -ICAgIG9zLnBhdGguZXhpc3RzKHNldHVwX3B5KQogICAgICAgIG9yIG9zLnBh -dGguZXhpc3RzKHB5cHJvamVjdF90b21sKQogICAgICAgIG9yIG9zLnBhdGgu -ZXhpc3RzKHZlcnNpb25lZXJfcHkpCiAgICApOgogICAgICAgICMgYWxsb3cg -J3B5dGhvbiBwYXRoL3RvL3NldHVwLnB5IENPTU1BTkQnCiAgICAgICAgcm9v -dCA9IG9zLnBhdGguZGlybmFtZShvcy5wYXRoLnJlYWxwYXRoKG9zLnBhdGgu -YWJzcGF0aChzeXMuYXJndlswXSkpKQogICAgICAgIHNldHVwX3B5ID0gb3Mu -cGF0aC5qb2luKHJvb3QsICJzZXR1cC5weSIpCiAgICAgICAgcHlwcm9qZWN0 -X3RvbWwgPSBvcy5wYXRoLmpvaW4ocm9vdCwgInB5cHJvamVjdC50b21sIikK -ICAgICAgICB2ZXJzaW9uZWVyX3B5ID0gb3MucGF0aC5qb2luKHJvb3QsICJ2 -ZXJzaW9uZWVyLnB5IikKICAgIGlmIG5vdCAoCiAgICAgICAgb3MucGF0aC5l -eGlzdHMoc2V0dXBfcHkpCiAgICAgICAgb3Igb3MucGF0aC5leGlzdHMocHlw -cm9qZWN0X3RvbWwpCiAgICAgICAgb3Igb3MucGF0aC5leGlzdHModmVyc2lv -bmVlcl9weSkKICAgICk6CiAgICAgICAgZXJyID0gKCJWZXJzaW9uZWVyIHdh -cyB1bmFibGUgdG8gcnVuIHRoZSBwcm9qZWN0IHJvb3QgZGlyZWN0b3J5LiAi -CiAgICAgICAgICAgICAgICJWZXJzaW9uZWVyIHJlcXVpcmVzIHNldHVwLnB5 -IHRvIGJlIGV4ZWN1dGVkIGZyb20gIgogICAgICAgICAgICAgICAiaXRzIGlt -bWVkaWF0ZSBkaXJlY3RvcnkgKGxpa2UgJ3B5dGhvbiBzZXR1cC5weSBDT01N -QU5EJyksICIKICAgICAgICAgICAgICAgIm9yIGluIGEgd2F5IHRoYXQgbGV0 -cyBpdCB1c2Ugc3lzLmFyZ3ZbMF0gdG8gZmluZCB0aGUgcm9vdCAiCiAgICAg -ICAgICAgICAgICIobGlrZSAncHl0aG9uIHBhdGgvdG8vc2V0dXAucHkgQ09N -TUFORCcpLiIpCiAgICAgICAgcmFpc2UgVmVyc2lvbmVlckJhZFJvb3RFcnJv -cihlcnIpCiAgICB0cnk6CiAgICAgICAgIyBDZXJ0YWluIHJ1bnRpbWUgd29y -a2Zsb3dzIChzZXR1cC5weSBpbnN0YWxsL2RldmVsb3AgaW4gYSBzZXR1cHRv -b2xzCiAgICAgICAgIyB0cmVlKSBleGVjdXRlIGFsbCBkZXBlbmRlbmNpZXMg -aW4gYSBzaW5nbGUgcHl0aG9uIHByb2Nlc3MsIHNvCiAgICAgICAgIyAidmVy -c2lvbmVlciIgbWF5IGJlIGltcG9ydGVkIG11bHRpcGxlIHRpbWVzLCBhbmQg -cHl0aG9uJ3Mgc2hhcmVkCiAgICAgICAgIyBtb2R1bGUtaW1wb3J0IHRhYmxl -IHdpbGwgY2FjaGUgdGhlIGZpcnN0IG9uZS4gU28gd2UgY2FuJ3QgdXNlCiAg -ICAgICAgIyBvcy5wYXRoLmRpcm5hbWUoX19maWxlX18pLCBhcyB0aGF0IHdp -bGwgZmluZCB3aGljaGV2ZXIKICAgICAgICAjIHZlcnNpb25lZXIucHkgd2Fz -IGZpcnN0IGltcG9ydGVkLCBldmVuIGluIGxhdGVyIHByb2plY3RzLgogICAg -ICAgIG15X3BhdGggPSBvcy5wYXRoLnJlYWxwYXRoKG9zLnBhdGguYWJzcGF0 -aChfX2ZpbGVfXykpCiAgICAgICAgbWVfZGlyID0gb3MucGF0aC5ub3JtY2Fz -ZShvcy5wYXRoLnNwbGl0ZXh0KG15X3BhdGgpWzBdKQogICAgICAgIHZzcl9k -aXIgPSBvcy5wYXRoLm5vcm1jYXNlKG9zLnBhdGguc3BsaXRleHQodmVyc2lv -bmVlcl9weSlbMF0pCiAgICAgICAgaWYgbWVfZGlyICE9IHZzcl9kaXIgYW5k -ICJWRVJTSU9ORUVSX1BFUDUxOCIgbm90IGluIGdsb2JhbHMoKToKICAgICAg -ICAgICAgcHJpbnQoIldhcm5pbmc6IGJ1aWxkIGluICVzIGlzIHVzaW5nIHZl -cnNpb25lZXIucHkgZnJvbSAlcyIKICAgICAgICAgICAgICAgICAgJSAob3Mu -cGF0aC5kaXJuYW1lKG15X3BhdGgpLCB2ZXJzaW9uZWVyX3B5KSkKICAgIGV4 -Y2VwdCBOYW1lRXJyb3I6CiAgICAgICAgcGFzcwogICAgcmV0dXJuIHJvb3QK -CgpkZWYgZ2V0X2NvbmZpZ19mcm9tX3Jvb3Qocm9vdDogc3RyKSAtPiBWZXJz -aW9uZWVyQ29uZmlnOgogICAgIiIiUmVhZCB0aGUgcHJvamVjdCBzZXR1cC5j -ZmcgZmlsZSB0byBkZXRlcm1pbmUgVmVyc2lvbmVlciBjb25maWcuIiIiCiAg -ICAjIFRoaXMgbWlnaHQgcmFpc2UgT1NFcnJvciAoaWYgc2V0dXAuY2ZnIGlz -IG1pc3NpbmcpLCBvcgogICAgIyBjb25maWdwYXJzZXIuTm9TZWN0aW9uRXJy -b3IgKGlmIGl0IGxhY2tzIGEgW3ZlcnNpb25lZXJdIHNlY3Rpb24pLCBvcgog -ICAgIyBjb25maWdwYXJzZXIuTm9PcHRpb25FcnJvciAoaWYgaXQgbGFja3Mg -IlZDUz0iKS4gU2VlIHRoZSBkb2NzdHJpbmcgYXQKICAgICMgdGhlIHRvcCBv -ZiB2ZXJzaW9uZWVyLnB5IGZvciBpbnN0cnVjdGlvbnMgb24gd3JpdGluZyB5 -b3VyIHNldHVwLmNmZyAuCiAgICByb290X3B0aCA9IFBhdGgocm9vdCkKICAg -IHB5cHJvamVjdF90b21sID0gcm9vdF9wdGggLyAicHlwcm9qZWN0LnRvbWwi -CiAgICBzZXR1cF9jZmcgPSByb290X3B0aCAvICJzZXR1cC5jZmciCiAgICBz -ZWN0aW9uOiBVbmlvbltEaWN0W3N0ciwgQW55XSwgY29uZmlncGFyc2VyLlNl -Y3Rpb25Qcm94eSwgTm9uZV0gPSBOb25lCiAgICBpZiBweXByb2plY3RfdG9t -bC5leGlzdHMoKSBhbmQgaGF2ZV90b21sbGliOgogICAgICAgIHRyeToKICAg -ICAgICAgICAgd2l0aCBvcGVuKHB5cHJvamVjdF90b21sLCAncmInKSBhcyBm -b2JqOgogICAgICAgICAgICAgICAgcHAgPSB0b21sbGliLmxvYWQoZm9iaikK -ICAgICAgICAgICAgc2VjdGlvbiA9IHBwWyd0b29sJ11bJ3ZlcnNpb25lZXIn -XQogICAgICAgIGV4Y2VwdCAodG9tbGxpYi5UT01MRGVjb2RlRXJyb3IsIEtl -eUVycm9yKSBhcyBlOgogICAgICAgICAgICBwcmludChmIkZhaWxlZCB0byBs -b2FkIGNvbmZpZyBmcm9tIHtweXByb2plY3RfdG9tbH06IHtlfSIpCiAgICAg -ICAgICAgIHByaW50KCJUcnkgdG8gbG9hZCBpdCBmcm9tIHNldHVwLmNmZyIp -CiAgICBpZiBub3Qgc2VjdGlvbjoKICAgICAgICBwYXJzZXIgPSBjb25maWdw -YXJzZXIuQ29uZmlnUGFyc2VyKCkKICAgICAgICB3aXRoIG9wZW4oc2V0dXBf -Y2ZnKSBhcyBjZmdfZmlsZToKICAgICAgICAgICAgcGFyc2VyLnJlYWRfZmls -ZShjZmdfZmlsZSkKICAgICAgICBwYXJzZXIuZ2V0KCJ2ZXJzaW9uZWVyIiwg -IlZDUyIpICAjIHJhaXNlIGVycm9yIGlmIG1pc3NpbmcKCiAgICAgICAgc2Vj -dGlvbiA9IHBhcnNlclsidmVyc2lvbmVlciJdCgogICAgIyBgY2FzdGBgIHJl -YWxseSBzaG91bGRuJ3QgYmUgdXNlZCwgYnV0IGl0cyBzaW1wbGVzdCBmb3Ig -dGhlCiAgICAjIGNvbW1vbiBWZXJzaW9uZWVyQ29uZmlnIHVzZXJzIGF0IHRo -ZSBtb21lbnQuIFdlIHZlcmlmeSBhZ2FpbnN0CiAgICAjIGBOb25lYCB2YWx1 -ZXMgZWxzZXdoZXJlIHdoZXJlIGl0IG1hdHRlcnMKCiAgICBjZmcgPSBWZXJz -aW9uZWVyQ29uZmlnKCkKICAgIGNmZy5WQ1MgPSBzZWN0aW9uWydWQ1MnXQog -ICAgY2ZnLnN0eWxlID0gc2VjdGlvbi5nZXQoInN0eWxlIiwgIiIpCiAgICBj -ZmcudmVyc2lvbmZpbGVfc291cmNlID0gY2FzdChzdHIsIHNlY3Rpb24uZ2V0 -KCJ2ZXJzaW9uZmlsZV9zb3VyY2UiKSkKICAgIGNmZy52ZXJzaW9uZmlsZV9i -dWlsZCA9IHNlY3Rpb24uZ2V0KCJ2ZXJzaW9uZmlsZV9idWlsZCIpCiAgICBj -ZmcudGFnX3ByZWZpeCA9IGNhc3Qoc3RyLCBzZWN0aW9uLmdldCgidGFnX3By -ZWZpeCIpKQogICAgaWYgY2ZnLnRhZ19wcmVmaXggaW4gKCInJyIsICciIics -IE5vbmUpOgogICAgICAgIGNmZy50YWdfcHJlZml4ID0gIiIKICAgIGNmZy5w -YXJlbnRkaXJfcHJlZml4ID0gc2VjdGlvbi5nZXQoInBhcmVudGRpcl9wcmVm -aXgiKQogICAgaWYgaXNpbnN0YW5jZShzZWN0aW9uLCBjb25maWdwYXJzZXIu -U2VjdGlvblByb3h5KToKICAgICAgICAjIE1ha2Ugc3VyZSBjb25maWdwYXJz -ZXIgdHJhbnNsYXRlcyB0byBib29sCiAgICAgICAgY2ZnLnZlcmJvc2UgPSBz -ZWN0aW9uLmdldGJvb2xlYW4oInZlcmJvc2UiKQogICAgZWxzZToKICAgICAg -ICBjZmcudmVyYm9zZSA9IHNlY3Rpb24uZ2V0KCJ2ZXJib3NlIikKCiAgICBy -ZXR1cm4gY2ZnCgoKY2xhc3MgTm90VGhpc01ldGhvZChFeGNlcHRpb24pOgog -ICAgIiIiRXhjZXB0aW9uIHJhaXNlZCBpZiBhIG1ldGhvZCBpcyBub3QgdmFs -aWQgZm9yIHRoZSBjdXJyZW50IHNjZW5hcmlvLiIiIgoKCiMgdGhlc2UgZGlj -dGlvbmFyaWVzIGNvbnRhaW4gVkNTLXNwZWNpZmljIHRvb2xzCkxPTkdfVkVS -U0lPTl9QWTogRGljdFtzdHIsIHN0cl0gPSB7fQpIQU5ETEVSUzogRGljdFtz -dHIsIERpY3Rbc3RyLCBDYWxsYWJsZV1dID0ge30KCgpkZWYgcmVnaXN0ZXJf -dmNzX2hhbmRsZXIodmNzOiBzdHIsIG1ldGhvZDogc3RyKSAtPiBDYWxsYWJs -ZTogICMgZGVjb3JhdG9yCiAgICAiIiJDcmVhdGUgZGVjb3JhdG9yIHRvIG1h -cmsgYSBtZXRob2QgYXMgdGhlIGhhbmRsZXIgb2YgYSBWQ1MuIiIiCiAgICBk -ZWYgZGVjb3JhdGUoZjogQ2FsbGFibGUpIC0+IENhbGxhYmxlOgogICAgICAg -ICIiIlN0b3JlIGYgaW4gSEFORExFUlNbdmNzXVttZXRob2RdLiIiIgogICAg -ICAgIEhBTkRMRVJTLnNldGRlZmF1bHQodmNzLCB7fSlbbWV0aG9kXSA9IGYK -ICAgICAgICByZXR1cm4gZgogICAgcmV0dXJuIGRlY29yYXRlCgoKZGVmIHJ1 -bl9jb21tYW5kKAogICAgY29tbWFuZHM6IExpc3Rbc3RyXSwKICAgIGFyZ3M6 -IExpc3Rbc3RyXSwKICAgIGN3ZDogT3B0aW9uYWxbc3RyXSA9IE5vbmUsCiAg -ICB2ZXJib3NlOiBib29sID0gRmFsc2UsCiAgICBoaWRlX3N0ZGVycjogYm9v -bCA9IEZhbHNlLAogICAgZW52OiBPcHRpb25hbFtEaWN0W3N0ciwgc3RyXV0g -PSBOb25lLAopIC0+IFR1cGxlW09wdGlvbmFsW3N0cl0sIE9wdGlvbmFsW2lu -dF1dOgogICAgIiIiQ2FsbCB0aGUgZ2l2ZW4gY29tbWFuZChzKS4iIiIKICAg -IGFzc2VydCBpc2luc3RhbmNlKGNvbW1hbmRzLCBsaXN0KQogICAgcHJvY2Vz -cyA9IE5vbmUKCiAgICBwb3Blbl9rd2FyZ3M6IERpY3Rbc3RyLCBBbnldID0g -e30KICAgIGlmIHN5cy5wbGF0Zm9ybSA9PSAid2luMzIiOgogICAgICAgICMg -VGhpcyBoaWRlcyB0aGUgY29uc29sZSB3aW5kb3cgaWYgcHl0aG9udy5leGUg -aXMgdXNlZAogICAgICAgIHN0YXJ0dXBpbmZvID0gc3VicHJvY2Vzcy5TVEFS -VFVQSU5GTygpCiAgICAgICAgc3RhcnR1cGluZm8uZHdGbGFncyB8PSBzdWJw -cm9jZXNzLlNUQVJURl9VU0VTSE9XV0lORE9XCiAgICAgICAgcG9wZW5fa3dh -cmdzWyJzdGFydHVwaW5mbyJdID0gc3RhcnR1cGluZm8KCiAgICBmb3IgY29t -bWFuZCBpbiBjb21tYW5kczoKICAgICAgICB0cnk6CiAgICAgICAgICAgIGRp -c3BjbWQgPSBzdHIoW2NvbW1hbmRdICsgYXJncykKICAgICAgICAgICAgIyBy -ZW1lbWJlciBzaGVsbD1GYWxzZSwgc28gdXNlIGdpdC5jbWQgb24gd2luZG93 -cywgbm90IGp1c3QgZ2l0CiAgICAgICAgICAgIHByb2Nlc3MgPSBzdWJwcm9j -ZXNzLlBvcGVuKFtjb21tYW5kXSArIGFyZ3MsIGN3ZD1jd2QsIGVudj1lbnYs -CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHN0ZG91 -dD1zdWJwcm9jZXNzLlBJUEUsCiAgICAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAgICAgIHN0ZGVycj0oc3VicHJvY2Vzcy5QSVBFIGlmIGhpZGVf -c3RkZXJyCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAgZWxzZSBOb25lKSwgKipwb3Blbl9rd2FyZ3MpCiAgICAgICAg -ICAgIGJyZWFrCiAgICAgICAgZXhjZXB0IE9TRXJyb3IgYXMgZToKICAgICAg -ICAgICAgaWYgZS5lcnJubyA9PSBlcnJuby5FTk9FTlQ6CiAgICAgICAgICAg -ICAgICBjb250aW51ZQogICAgICAgICAgICBpZiB2ZXJib3NlOgogICAgICAg -ICAgICAgICAgcHJpbnQoInVuYWJsZSB0byBydW4gJXMiICUgZGlzcGNtZCkK -ICAgICAgICAgICAgICAgIHByaW50KGUpCiAgICAgICAgICAgIHJldHVybiBO -b25lLCBOb25lCiAgICBlbHNlOgogICAgICAgIGlmIHZlcmJvc2U6CiAgICAg -ICAgICAgIHByaW50KCJ1bmFibGUgdG8gZmluZCBjb21tYW5kLCB0cmllZCAl -cyIgJSAoY29tbWFuZHMsKSkKICAgICAgICByZXR1cm4gTm9uZSwgTm9uZQog -ICAgc3Rkb3V0ID0gcHJvY2Vzcy5jb21tdW5pY2F0ZSgpWzBdLnN0cmlwKCku -ZGVjb2RlKCkKICAgIGlmIHByb2Nlc3MucmV0dXJuY29kZSAhPSAwOgogICAg -ICAgIGlmIHZlcmJvc2U6CiAgICAgICAgICAgIHByaW50KCJ1bmFibGUgdG8g -cnVuICVzIChlcnJvcikiICUgZGlzcGNtZCkKICAgICAgICAgICAgcHJpbnQo -InN0ZG91dCB3YXMgJXMiICUgc3Rkb3V0KQogICAgICAgIHJldHVybiBOb25l -LCBwcm9jZXNzLnJldHVybmNvZGUKICAgIHJldHVybiBzdGRvdXQsIHByb2Nl -c3MucmV0dXJuY29kZQoKCkxPTkdfVkVSU0lPTl9QWVsnZ2l0J10gPSByJycn -CiMgVGhpcyBmaWxlIGhlbHBzIHRvIGNvbXB1dGUgYSB2ZXJzaW9uIG51bWJl -ciBpbiBzb3VyY2UgdHJlZXMgb2J0YWluZWQgZnJvbQojIGdpdC1hcmNoaXZl -IHRhcmJhbGwgKHN1Y2ggYXMgdGhvc2UgcHJvdmlkZWQgYnkgZ2l0aHVicyBk -b3dubG9hZC1mcm9tLXRhZwojIGZlYXR1cmUpLiBEaXN0cmlidXRpb24gdGFy -YmFsbHMgKGJ1aWx0IGJ5IHNldHVwLnB5IHNkaXN0KSBhbmQgYnVpbGQKIyBk -aXJlY3RvcmllcyAocHJvZHVjZWQgYnkgc2V0dXAucHkgYnVpbGQpIHdpbGwg -Y29udGFpbiBhIG11Y2ggc2hvcnRlciBmaWxlCiMgdGhhdCBqdXN0IGNvbnRh -aW5zIHRoZSBjb21wdXRlZCB2ZXJzaW9uIG51bWJlci4KCiMgVGhpcyBmaWxl -IGlzIHJlbGVhc2VkIGludG8gdGhlIHB1YmxpYyBkb21haW4uCiMgR2VuZXJh -dGVkIGJ5IHZlcnNpb25lZXItMC4yOQojIGh0dHBzOi8vZ2l0aHViLmNvbS9w -eXRob24tdmVyc2lvbmVlci9weXRob24tdmVyc2lvbmVlcgoKIiIiR2l0IGlt -cGxlbWVudGF0aW9uIG9mIF92ZXJzaW9uLnB5LiIiIgoKaW1wb3J0IGVycm5v -CmltcG9ydCBvcwppbXBvcnQgcmUKaW1wb3J0IHN1YnByb2Nlc3MKaW1wb3J0 -IHN5cwpmcm9tIHR5cGluZyBpbXBvcnQgQW55LCBDYWxsYWJsZSwgRGljdCwg -TGlzdCwgT3B0aW9uYWwsIFR1cGxlCmltcG9ydCBmdW5jdG9vbHMKCgpkZWYg -Z2V0X2tleXdvcmRzKCkgLT4gRGljdFtzdHIsIHN0cl06CiAgICAiIiJHZXQg -dGhlIGtleXdvcmRzIG5lZWRlZCB0byBsb29rIHVwIHRoZSB2ZXJzaW9uIGlu -Zm9ybWF0aW9uLiIiIgogICAgIyB0aGVzZSBzdHJpbmdzIHdpbGwgYmUgcmVw -bGFjZWQgYnkgZ2l0IGR1cmluZyBnaXQtYXJjaGl2ZS4KICAgICMgc2V0dXAu -cHkvdmVyc2lvbmVlci5weSB3aWxsIGdyZXAgZm9yIHRoZSB2YXJpYWJsZSBu -YW1lcywgc28gdGhleSBtdXN0CiAgICAjIGVhY2ggYmUgZGVmaW5lZCBvbiBh -IGxpbmUgb2YgdGhlaXIgb3duLiBfdmVyc2lvbi5weSB3aWxsIGp1c3QgY2Fs -bAogICAgIyBnZXRfa2V5d29yZHMoKS4KICAgIGdpdF9yZWZuYW1lcyA9ICIl -KERPTExBUilzRm9ybWF0OiUlZCUoRE9MTEFSKXMiCiAgICBnaXRfZnVsbCA9 -ICIlKERPTExBUilzRm9ybWF0OiUlSCUoRE9MTEFSKXMiCiAgICBnaXRfZGF0 -ZSA9ICIlKERPTExBUilzRm9ybWF0OiUlY2klKERPTExBUilzIgogICAga2V5 -d29yZHMgPSB7InJlZm5hbWVzIjogZ2l0X3JlZm5hbWVzLCAiZnVsbCI6IGdp -dF9mdWxsLCAiZGF0ZSI6IGdpdF9kYXRlfQogICAgcmV0dXJuIGtleXdvcmRz -CgoKY2xhc3MgVmVyc2lvbmVlckNvbmZpZzoKICAgICIiIkNvbnRhaW5lciBm -b3IgVmVyc2lvbmVlciBjb25maWd1cmF0aW9uIHBhcmFtZXRlcnMuIiIiCgog -ICAgVkNTOiBzdHIKICAgIHN0eWxlOiBzdHIKICAgIHRhZ19wcmVmaXg6IHN0 -cgogICAgcGFyZW50ZGlyX3ByZWZpeDogc3RyCiAgICB2ZXJzaW9uZmlsZV9z -b3VyY2U6IHN0cgogICAgdmVyYm9zZTogYm9vbAoKCmRlZiBnZXRfY29uZmln -KCkgLT4gVmVyc2lvbmVlckNvbmZpZzoKICAgICIiIkNyZWF0ZSwgcG9wdWxh -dGUgYW5kIHJldHVybiB0aGUgVmVyc2lvbmVlckNvbmZpZygpIG9iamVjdC4i -IiIKICAgICMgdGhlc2Ugc3RyaW5ncyBhcmUgZmlsbGVkIGluIHdoZW4gJ3Nl -dHVwLnB5IHZlcnNpb25lZXInIGNyZWF0ZXMKICAgICMgX3ZlcnNpb24ucHkK -ICAgIGNmZyA9IFZlcnNpb25lZXJDb25maWcoKQogICAgY2ZnLlZDUyA9ICJn -aXQiCiAgICBjZmcuc3R5bGUgPSAiJShTVFlMRSlzIgogICAgY2ZnLnRhZ19w -cmVmaXggPSAiJShUQUdfUFJFRklYKXMiCiAgICBjZmcucGFyZW50ZGlyX3By -ZWZpeCA9ICIlKFBBUkVOVERJUl9QUkVGSVgpcyIKICAgIGNmZy52ZXJzaW9u -ZmlsZV9zb3VyY2UgPSAiJShWRVJTSU9ORklMRV9TT1VSQ0UpcyIKICAgIGNm -Zy52ZXJib3NlID0gRmFsc2UKICAgIHJldHVybiBjZmcKCgpjbGFzcyBOb3RU -aGlzTWV0aG9kKEV4Y2VwdGlvbik6CiAgICAiIiJFeGNlcHRpb24gcmFpc2Vk -IGlmIGEgbWV0aG9kIGlzIG5vdCB2YWxpZCBmb3IgdGhlIGN1cnJlbnQgc2Nl -bmFyaW8uIiIiCgoKTE9OR19WRVJTSU9OX1BZOiBEaWN0W3N0ciwgc3RyXSA9 -IHt9CkhBTkRMRVJTOiBEaWN0W3N0ciwgRGljdFtzdHIsIENhbGxhYmxlXV0g -PSB7fQoKCmRlZiByZWdpc3Rlcl92Y3NfaGFuZGxlcih2Y3M6IHN0ciwgbWV0 -aG9kOiBzdHIpIC0+IENhbGxhYmxlOiAgIyBkZWNvcmF0b3IKICAgICIiIkNy -ZWF0ZSBkZWNvcmF0b3IgdG8gbWFyayBhIG1ldGhvZCBhcyB0aGUgaGFuZGxl -ciBvZiBhIFZDUy4iIiIKICAgIGRlZiBkZWNvcmF0ZShmOiBDYWxsYWJsZSkg -LT4gQ2FsbGFibGU6CiAgICAgICAgIiIiU3RvcmUgZiBpbiBIQU5ETEVSU1t2 -Y3NdW21ldGhvZF0uIiIiCiAgICAgICAgaWYgdmNzIG5vdCBpbiBIQU5ETEVS -UzoKICAgICAgICAgICAgSEFORExFUlNbdmNzXSA9IHt9CiAgICAgICAgSEFO -RExFUlNbdmNzXVttZXRob2RdID0gZgogICAgICAgIHJldHVybiBmCiAgICBy -ZXR1cm4gZGVjb3JhdGUKCgpkZWYgcnVuX2NvbW1hbmQoCiAgICBjb21tYW5k -czogTGlzdFtzdHJdLAogICAgYXJnczogTGlzdFtzdHJdLAogICAgY3dkOiBP -cHRpb25hbFtzdHJdID0gTm9uZSwKICAgIHZlcmJvc2U6IGJvb2wgPSBGYWxz -ZSwKICAgIGhpZGVfc3RkZXJyOiBib29sID0gRmFsc2UsCiAgICBlbnY6IE9w -dGlvbmFsW0RpY3Rbc3RyLCBzdHJdXSA9IE5vbmUsCikgLT4gVHVwbGVbT3B0 -aW9uYWxbc3RyXSwgT3B0aW9uYWxbaW50XV06CiAgICAiIiJDYWxsIHRoZSBn -aXZlbiBjb21tYW5kKHMpLiIiIgogICAgYXNzZXJ0IGlzaW5zdGFuY2UoY29t -bWFuZHMsIGxpc3QpCiAgICBwcm9jZXNzID0gTm9uZQoKICAgIHBvcGVuX2t3 -YXJnczogRGljdFtzdHIsIEFueV0gPSB7fQogICAgaWYgc3lzLnBsYXRmb3Jt -ID09ICJ3aW4zMiI6CiAgICAgICAgIyBUaGlzIGhpZGVzIHRoZSBjb25zb2xl -IHdpbmRvdyBpZiBweXRob253LmV4ZSBpcyB1c2VkCiAgICAgICAgc3RhcnR1 -cGluZm8gPSBzdWJwcm9jZXNzLlNUQVJUVVBJTkZPKCkKICAgICAgICBzdGFy -dHVwaW5mby5kd0ZsYWdzIHw9IHN1YnByb2Nlc3MuU1RBUlRGX1VTRVNIT1dX -SU5ET1cKICAgICAgICBwb3Blbl9rd2FyZ3NbInN0YXJ0dXBpbmZvIl0gPSBz -dGFydHVwaW5mbwoKICAgIGZvciBjb21tYW5kIGluIGNvbW1hbmRzOgogICAg -ICAgIHRyeToKICAgICAgICAgICAgZGlzcGNtZCA9IHN0cihbY29tbWFuZF0g -KyBhcmdzKQogICAgICAgICAgICAjIHJlbWVtYmVyIHNoZWxsPUZhbHNlLCBz -byB1c2UgZ2l0LmNtZCBvbiB3aW5kb3dzLCBub3QganVzdCBnaXQKICAgICAg -ICAgICAgcHJvY2VzcyA9IHN1YnByb2Nlc3MuUG9wZW4oW2NvbW1hbmRdICsg -YXJncywgY3dkPWN3ZCwgZW52PWVudiwKICAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAgICAgICAgICAgc3Rkb3V0PXN1YnByb2Nlc3MuUElQRSwKICAg -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgc3RkZXJyPShz -dWJwcm9jZXNzLlBJUEUgaWYgaGlkZV9zdGRlcnIKICAgICAgICAgICAgICAg -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBlbHNlIE5vbmUpLCAq -KnBvcGVuX2t3YXJncykKICAgICAgICAgICAgYnJlYWsKICAgICAgICBleGNl -cHQgT1NFcnJvciBhcyBlOgogICAgICAgICAgICBpZiBlLmVycm5vID09IGVy -cm5vLkVOT0VOVDoKICAgICAgICAgICAgICAgIGNvbnRpbnVlCiAgICAgICAg -ICAgIGlmIHZlcmJvc2U6CiAgICAgICAgICAgICAgICBwcmludCgidW5hYmxl -IHRvIHJ1biAlJXMiICUlIGRpc3BjbWQpCiAgICAgICAgICAgICAgICBwcmlu -dChlKQogICAgICAgICAgICByZXR1cm4gTm9uZSwgTm9uZQogICAgZWxzZToK -ICAgICAgICBpZiB2ZXJib3NlOgogICAgICAgICAgICBwcmludCgidW5hYmxl -IHRvIGZpbmQgY29tbWFuZCwgdHJpZWQgJSVzIiAlJSAoY29tbWFuZHMsKSkK -ICAgICAgICByZXR1cm4gTm9uZSwgTm9uZQogICAgc3Rkb3V0ID0gcHJvY2Vz -cy5jb21tdW5pY2F0ZSgpWzBdLnN0cmlwKCkuZGVjb2RlKCkKICAgIGlmIHBy -b2Nlc3MucmV0dXJuY29kZSAhPSAwOgogICAgICAgIGlmIHZlcmJvc2U6CiAg -ICAgICAgICAgIHByaW50KCJ1bmFibGUgdG8gcnVuICUlcyAoZXJyb3IpIiAl -JSBkaXNwY21kKQogICAgICAgICAgICBwcmludCgic3Rkb3V0IHdhcyAlJXMi -ICUlIHN0ZG91dCkKICAgICAgICByZXR1cm4gTm9uZSwgcHJvY2Vzcy5yZXR1 -cm5jb2RlCiAgICByZXR1cm4gc3Rkb3V0LCBwcm9jZXNzLnJldHVybmNvZGUK -CgpkZWYgdmVyc2lvbnNfZnJvbV9wYXJlbnRkaXIoCiAgICBwYXJlbnRkaXJf -cHJlZml4OiBzdHIsCiAgICByb290OiBzdHIsCiAgICB2ZXJib3NlOiBib29s -LAopIC0+IERpY3Rbc3RyLCBBbnldOgogICAgIiIiVHJ5IHRvIGRldGVybWlu -ZSB0aGUgdmVyc2lvbiBmcm9tIHRoZSBwYXJlbnQgZGlyZWN0b3J5IG5hbWUu -CgogICAgU291cmNlIHRhcmJhbGxzIGNvbnZlbnRpb25hbGx5IHVucGFjayBp -bnRvIGEgZGlyZWN0b3J5IHRoYXQgaW5jbHVkZXMgYm90aAogICAgdGhlIHBy -b2plY3QgbmFtZSBhbmQgYSB2ZXJzaW9uIHN0cmluZy4gV2Ugd2lsbCBhbHNv -IHN1cHBvcnQgc2VhcmNoaW5nIHVwCiAgICB0d28gZGlyZWN0b3J5IGxldmVs -cyBmb3IgYW4gYXBwcm9wcmlhdGVseSBuYW1lZCBwYXJlbnQgZGlyZWN0b3J5 -CiAgICAiIiIKICAgIHJvb3RkaXJzID0gW10KCiAgICBmb3IgXyBpbiByYW5n -ZSgzKToKICAgICAgICBkaXJuYW1lID0gb3MucGF0aC5iYXNlbmFtZShyb290 -KQogICAgICAgIGlmIGRpcm5hbWUuc3RhcnRzd2l0aChwYXJlbnRkaXJfcHJl -Zml4KToKICAgICAgICAgICAgcmV0dXJuIHsidmVyc2lvbiI6IGRpcm5hbWVb -bGVuKHBhcmVudGRpcl9wcmVmaXgpOl0sCiAgICAgICAgICAgICAgICAgICAg -ImZ1bGwtcmV2aXNpb25pZCI6IE5vbmUsCiAgICAgICAgICAgICAgICAgICAg -ImRpcnR5IjogRmFsc2UsICJlcnJvciI6IE5vbmUsICJkYXRlIjogTm9uZX0K -ICAgICAgICByb290ZGlycy5hcHBlbmQocm9vdCkKICAgICAgICByb290ID0g -b3MucGF0aC5kaXJuYW1lKHJvb3QpICAjIHVwIGEgbGV2ZWwKCiAgICBpZiB2 -ZXJib3NlOgogICAgICAgIHByaW50KCJUcmllZCBkaXJlY3RvcmllcyAlJXMg -YnV0IG5vbmUgc3RhcnRlZCB3aXRoIHByZWZpeCAlJXMiICUlCiAgICAgICAg -ICAgICAgKHN0cihyb290ZGlycyksIHBhcmVudGRpcl9wcmVmaXgpKQogICAg -cmFpc2UgTm90VGhpc01ldGhvZCgicm9vdGRpciBkb2Vzbid0IHN0YXJ0IHdp -dGggcGFyZW50ZGlyX3ByZWZpeCIpCgoKQHJlZ2lzdGVyX3Zjc19oYW5kbGVy -KCJnaXQiLCAiZ2V0X2tleXdvcmRzIikKZGVmIGdpdF9nZXRfa2V5d29yZHMo -dmVyc2lvbmZpbGVfYWJzOiBzdHIpIC0+IERpY3Rbc3RyLCBzdHJdOgogICAg -IiIiRXh0cmFjdCB2ZXJzaW9uIGluZm9ybWF0aW9uIGZyb20gdGhlIGdpdmVu -IGZpbGUuIiIiCiAgICAjIHRoZSBjb2RlIGVtYmVkZGVkIGluIF92ZXJzaW9u -LnB5IGNhbiBqdXN0IGZldGNoIHRoZSB2YWx1ZSBvZiB0aGVzZQogICAgIyBr -ZXl3b3Jkcy4gV2hlbiB1c2VkIGZyb20gc2V0dXAucHksIHdlIGRvbid0IHdh -bnQgdG8gaW1wb3J0IF92ZXJzaW9uLnB5LAogICAgIyBzbyB3ZSBkbyBpdCB3 -aXRoIGEgcmVnZXhwIGluc3RlYWQuIFRoaXMgZnVuY3Rpb24gaXMgbm90IHVz -ZWQgZnJvbQogICAgIyBfdmVyc2lvbi5weS4KICAgIGtleXdvcmRzOiBEaWN0 -W3N0ciwgc3RyXSA9IHt9CiAgICB0cnk6CiAgICAgICAgd2l0aCBvcGVuKHZl -cnNpb25maWxlX2FicywgInIiKSBhcyBmb2JqOgogICAgICAgICAgICBmb3Ig -bGluZSBpbiBmb2JqOgogICAgICAgICAgICAgICAgaWYgbGluZS5zdHJpcCgp -LnN0YXJ0c3dpdGgoImdpdF9yZWZuYW1lcyA9Iik6CiAgICAgICAgICAgICAg -ICAgICAgbW8gPSByZS5zZWFyY2gocic9XHMqIiguKikiJywgbGluZSkKICAg -ICAgICAgICAgICAgICAgICBpZiBtbzoKICAgICAgICAgICAgICAgICAgICAg -ICAga2V5d29yZHNbInJlZm5hbWVzIl0gPSBtby5ncm91cCgxKQogICAgICAg -ICAgICAgICAgaWYgbGluZS5zdHJpcCgpLnN0YXJ0c3dpdGgoImdpdF9mdWxs -ID0iKToKICAgICAgICAgICAgICAgICAgICBtbyA9IHJlLnNlYXJjaChyJz1c -cyoiKC4qKSInLCBsaW5lKQogICAgICAgICAgICAgICAgICAgIGlmIG1vOgog -ICAgICAgICAgICAgICAgICAgICAgICBrZXl3b3Jkc1siZnVsbCJdID0gbW8u -Z3JvdXAoMSkKICAgICAgICAgICAgICAgIGlmIGxpbmUuc3RyaXAoKS5zdGFy -dHN3aXRoKCJnaXRfZGF0ZSA9Iik6CiAgICAgICAgICAgICAgICAgICAgbW8g -PSByZS5zZWFyY2gocic9XHMqIiguKikiJywgbGluZSkKICAgICAgICAgICAg -ICAgICAgICBpZiBtbzoKICAgICAgICAgICAgICAgICAgICAgICAga2V5d29y -ZHNbImRhdGUiXSA9IG1vLmdyb3VwKDEpCiAgICBleGNlcHQgT1NFcnJvcjoK -ICAgICAgICBwYXNzCiAgICByZXR1cm4ga2V5d29yZHMKCgpAcmVnaXN0ZXJf -dmNzX2hhbmRsZXIoImdpdCIsICJrZXl3b3JkcyIpCmRlZiBnaXRfdmVyc2lv -bnNfZnJvbV9rZXl3b3JkcygKICAgIGtleXdvcmRzOiBEaWN0W3N0ciwgc3Ry -XSwKICAgIHRhZ19wcmVmaXg6IHN0ciwKICAgIHZlcmJvc2U6IGJvb2wsCikg -LT4gRGljdFtzdHIsIEFueV06CiAgICAiIiJHZXQgdmVyc2lvbiBpbmZvcm1h -dGlvbiBmcm9tIGdpdCBrZXl3b3Jkcy4iIiIKICAgIGlmICJyZWZuYW1lcyIg -bm90IGluIGtleXdvcmRzOgogICAgICAgIHJhaXNlIE5vdFRoaXNNZXRob2Qo -IlNob3J0IHZlcnNpb24gZmlsZSBmb3VuZCIpCiAgICBkYXRlID0ga2V5d29y -ZHMuZ2V0KCJkYXRlIikKICAgIGlmIGRhdGUgaXMgbm90IE5vbmU6CiAgICAg -ICAgIyBVc2Ugb25seSB0aGUgbGFzdCBsaW5lLiAgUHJldmlvdXMgbGluZXMg -bWF5IGNvbnRhaW4gR1BHIHNpZ25hdHVyZQogICAgICAgICMgaW5mb3JtYXRp -b24uCiAgICAgICAgZGF0ZSA9IGRhdGUuc3BsaXRsaW5lcygpWy0xXQoKICAg -ICAgICAjIGdpdC0yLjIuMCBhZGRlZCAiJSVjSSIsIHdoaWNoIGV4cGFuZHMg -dG8gYW4gSVNPLTg2MDEgLWNvbXBsaWFudAogICAgICAgICMgZGF0ZXN0YW1w -LiBIb3dldmVyIHdlIHByZWZlciAiJSVjaSIgKHdoaWNoIGV4cGFuZHMgdG8g -YW4gIklTTy04NjAxCiAgICAgICAgIyAtbGlrZSIgc3RyaW5nLCB3aGljaCB3 -ZSBtdXN0IHRoZW4gZWRpdCB0byBtYWtlIGNvbXBsaWFudCksIGJlY2F1c2UK -ICAgICAgICAjIGl0J3MgYmVlbiBhcm91bmQgc2luY2UgZ2l0LTEuNS4zLCBh -bmQgaXQncyB0b28gZGlmZmljdWx0IHRvCiAgICAgICAgIyBkaXNjb3ZlciB3 -aGljaCB2ZXJzaW9uIHdlJ3JlIHVzaW5nLCBvciB0byB3b3JrIGFyb3VuZCB1 -c2luZyBhbgogICAgICAgICMgb2xkZXIgb25lLgogICAgICAgIGRhdGUgPSBk -YXRlLnN0cmlwKCkucmVwbGFjZSgiICIsICJUIiwgMSkucmVwbGFjZSgiICIs -ICIiLCAxKQogICAgcmVmbmFtZXMgPSBrZXl3b3Jkc1sicmVmbmFtZXMiXS5z -dHJpcCgpCiAgICBpZiByZWZuYW1lcy5zdGFydHN3aXRoKCIkRm9ybWF0Iik6 -CiAgICAgICAgaWYgdmVyYm9zZToKICAgICAgICAgICAgcHJpbnQoImtleXdv -cmRzIGFyZSB1bmV4cGFuZGVkLCBub3QgdXNpbmciKQogICAgICAgIHJhaXNl -IE5vdFRoaXNNZXRob2QoInVuZXhwYW5kZWQga2V5d29yZHMsIG5vdCBhIGdp -dC1hcmNoaXZlIHRhcmJhbGwiKQogICAgcmVmcyA9IHtyLnN0cmlwKCkgZm9y -IHIgaW4gcmVmbmFtZXMuc3RyaXAoIigpIikuc3BsaXQoIiwiKX0KICAgICMg -c3RhcnRpbmcgaW4gZ2l0LTEuOC4zLCB0YWdzIGFyZSBsaXN0ZWQgYXMgInRh -ZzogZm9vLTEuMCIgaW5zdGVhZCBvZgogICAgIyBqdXN0ICJmb28tMS4wIi4g -SWYgd2Ugc2VlIGEgInRhZzogIiBwcmVmaXgsIHByZWZlciB0aG9zZS4KICAg -IFRBRyA9ICJ0YWc6ICIKICAgIHRhZ3MgPSB7cltsZW4oVEFHKTpdIGZvciBy -IGluIHJlZnMgaWYgci5zdGFydHN3aXRoKFRBRyl9CiAgICBpZiBub3QgdGFn -czoKICAgICAgICAjIEVpdGhlciB3ZSdyZSB1c2luZyBnaXQgPCAxLjguMywg -b3IgdGhlcmUgcmVhbGx5IGFyZSBubyB0YWdzLiBXZSB1c2UKICAgICAgICAj -IGEgaGV1cmlzdGljOiBhc3N1bWUgYWxsIHZlcnNpb24gdGFncyBoYXZlIGEg -ZGlnaXQuIFRoZSBvbGQgZ2l0ICUlZAogICAgICAgICMgZXhwYW5zaW9uIGJl -aGF2ZXMgbGlrZSBnaXQgbG9nIC0tZGVjb3JhdGU9c2hvcnQgYW5kIHN0cmlw -cyBvdXQgdGhlCiAgICAgICAgIyByZWZzL2hlYWRzLyBhbmQgcmVmcy90YWdz -LyBwcmVmaXhlcyB0aGF0IHdvdWxkIGxldCB1cyBkaXN0aW5ndWlzaAogICAg -ICAgICMgYmV0d2VlbiBicmFuY2hlcyBhbmQgdGFncy4gQnkgaWdub3Jpbmcg -cmVmbmFtZXMgd2l0aG91dCBkaWdpdHMsIHdlCiAgICAgICAgIyBmaWx0ZXIg -b3V0IG1hbnkgY29tbW9uIGJyYW5jaCBuYW1lcyBsaWtlICJyZWxlYXNlIiBh -bmQKICAgICAgICAjICJzdGFiaWxpemF0aW9uIiwgYXMgd2VsbCBhcyAiSEVB -RCIgYW5kICJtYXN0ZXIiLgogICAgICAgIHRhZ3MgPSB7ciBmb3IgciBpbiBy -ZWZzIGlmIHJlLnNlYXJjaChyJ1xkJywgcil9CiAgICAgICAgaWYgdmVyYm9z -ZToKICAgICAgICAgICAgcHJpbnQoImRpc2NhcmRpbmcgJyUlcycsIG5vIGRp -Z2l0cyIgJSUgIiwiLmpvaW4ocmVmcyAtIHRhZ3MpKQogICAgaWYgdmVyYm9z -ZToKICAgICAgICBwcmludCgibGlrZWx5IHRhZ3M6ICUlcyIgJSUgIiwiLmpv -aW4oc29ydGVkKHRhZ3MpKSkKICAgIGZvciByZWYgaW4gc29ydGVkKHRhZ3Mp -OgogICAgICAgICMgc29ydGluZyB3aWxsIHByZWZlciBlLmcuICIyLjAiIG92 -ZXIgIjIuMHJjMSIKICAgICAgICBpZiByZWYuc3RhcnRzd2l0aCh0YWdfcHJl -Zml4KToKICAgICAgICAgICAgciA9IHJlZltsZW4odGFnX3ByZWZpeCk6XQog -ICAgICAgICAgICAjIEZpbHRlciBvdXQgcmVmcyB0aGF0IGV4YWN0bHkgbWF0 -Y2ggcHJlZml4IG9yIHRoYXQgZG9uJ3Qgc3RhcnQKICAgICAgICAgICAgIyB3 -aXRoIGEgbnVtYmVyIG9uY2UgdGhlIHByZWZpeCBpcyBzdHJpcHBlZCAobW9z -dGx5IGEgY29uY2VybgogICAgICAgICAgICAjIHdoZW4gcHJlZml4IGlzICcn -KQogICAgICAgICAgICBpZiBub3QgcmUubWF0Y2gocidcZCcsIHIpOgogICAg -ICAgICAgICAgICAgY29udGludWUKICAgICAgICAgICAgaWYgdmVyYm9zZToK -ICAgICAgICAgICAgICAgIHByaW50KCJwaWNraW5nICUlcyIgJSUgcikKICAg -ICAgICAgICAgcmV0dXJuIHsidmVyc2lvbiI6IHIsCiAgICAgICAgICAgICAg -ICAgICAgImZ1bGwtcmV2aXNpb25pZCI6IGtleXdvcmRzWyJmdWxsIl0uc3Ry -aXAoKSwKICAgICAgICAgICAgICAgICAgICAiZGlydHkiOiBGYWxzZSwgImVy -cm9yIjogTm9uZSwKICAgICAgICAgICAgICAgICAgICAiZGF0ZSI6IGRhdGV9 -CiAgICAjIG5vIHN1aXRhYmxlIHRhZ3MsIHNvIHZlcnNpb24gaXMgIjArdW5r -bm93biIsIGJ1dCBmdWxsIGhleCBpcyBzdGlsbCB0aGVyZQogICAgaWYgdmVy -Ym9zZToKICAgICAgICBwcmludCgibm8gc3VpdGFibGUgdGFncywgdXNpbmcg -dW5rbm93biArIGZ1bGwgcmV2aXNpb24gaWQiKQogICAgcmV0dXJuIHsidmVy -c2lvbiI6ICIwK3Vua25vd24iLAogICAgICAgICAgICAiZnVsbC1yZXZpc2lv -bmlkIjoga2V5d29yZHNbImZ1bGwiXS5zdHJpcCgpLAogICAgICAgICAgICAi -ZGlydHkiOiBGYWxzZSwgImVycm9yIjogIm5vIHN1aXRhYmxlIHRhZ3MiLCAi -ZGF0ZSI6IE5vbmV9CgoKQHJlZ2lzdGVyX3Zjc19oYW5kbGVyKCJnaXQiLCAi -cGllY2VzX2Zyb21fdmNzIikKZGVmIGdpdF9waWVjZXNfZnJvbV92Y3MoCiAg -ICB0YWdfcHJlZml4OiBzdHIsCiAgICByb290OiBzdHIsCiAgICB2ZXJib3Nl -OiBib29sLAogICAgcnVubmVyOiBDYWxsYWJsZSA9IHJ1bl9jb21tYW5kCikg -LT4gRGljdFtzdHIsIEFueV06CiAgICAiIiJHZXQgdmVyc2lvbiBmcm9tICdn -aXQgZGVzY3JpYmUnIGluIHRoZSByb290IG9mIHRoZSBzb3VyY2UgdHJlZS4K -CiAgICBUaGlzIG9ubHkgZ2V0cyBjYWxsZWQgaWYgdGhlIGdpdC1hcmNoaXZl -ICdzdWJzdCcga2V5d29yZHMgd2VyZSAqbm90KgogICAgZXhwYW5kZWQsIGFu -ZCBfdmVyc2lvbi5weSBoYXNuJ3QgYWxyZWFkeSBiZWVuIHJld3JpdHRlbiB3 -aXRoIGEgc2hvcnQKICAgIHZlcnNpb24gc3RyaW5nLCBtZWFuaW5nIHdlJ3Jl -IGluc2lkZSBhIGNoZWNrZWQgb3V0IHNvdXJjZSB0cmVlLgogICAgIiIiCiAg -ICBHSVRTID0gWyJnaXQiXQogICAgaWYgc3lzLnBsYXRmb3JtID09ICJ3aW4z -MiI6CiAgICAgICAgR0lUUyA9IFsiZ2l0LmNtZCIsICJnaXQuZXhlIl0KCiAg -ICAjIEdJVF9ESVIgY2FuIGludGVyZmVyZSB3aXRoIGNvcnJlY3Qgb3BlcmF0 -aW9uIG9mIFZlcnNpb25lZXIuCiAgICAjIEl0IG1heSBiZSBpbnRlbmRlZCB0 -byBiZSBwYXNzZWQgdG8gdGhlIFZlcnNpb25lZXItdmVyc2lvbmVkIHByb2pl -Y3QsCiAgICAjIGJ1dCB0aGF0IHNob3VsZCBub3QgY2hhbmdlIHdoZXJlIHdl -IGdldCBvdXIgdmVyc2lvbiBmcm9tLgogICAgZW52ID0gb3MuZW52aXJvbi5j -b3B5KCkKICAgIGVudi5wb3AoIkdJVF9ESVIiLCBOb25lKQogICAgcnVubmVy -ID0gZnVuY3Rvb2xzLnBhcnRpYWwocnVubmVyLCBlbnY9ZW52KQoKICAgIF8s -IHJjID0gcnVubmVyKEdJVFMsIFsicmV2LXBhcnNlIiwgIi0tZ2l0LWRpciJd -LCBjd2Q9cm9vdCwKICAgICAgICAgICAgICAgICAgIGhpZGVfc3RkZXJyPW5v -dCB2ZXJib3NlKQogICAgaWYgcmMgIT0gMDoKICAgICAgICBpZiB2ZXJib3Nl -OgogICAgICAgICAgICBwcmludCgiRGlyZWN0b3J5ICUlcyBub3QgdW5kZXIg -Z2l0IGNvbnRyb2wiICUlIHJvb3QpCiAgICAgICAgcmFpc2UgTm90VGhpc01l -dGhvZCgiJ2dpdCByZXYtcGFyc2UgLS1naXQtZGlyJyByZXR1cm5lZCBlcnJv -ciIpCgogICAgIyBpZiB0aGVyZSBpcyBhIHRhZyBtYXRjaGluZyB0YWdfcHJl -Zml4LCB0aGlzIHlpZWxkcyBUQUctTlVNLWdIRVhbLWRpcnR5XQogICAgIyBp -ZiB0aGVyZSBpc24ndCBvbmUsIHRoaXMgeWllbGRzIEhFWFstZGlydHldIChu -byBOVU0pCiAgICBkZXNjcmliZV9vdXQsIHJjID0gcnVubmVyKEdJVFMsIFsK -ICAgICAgICAiZGVzY3JpYmUiLCAiLS10YWdzIiwgIi0tZGlydHkiLCAiLS1h -bHdheXMiLCAiLS1sb25nIiwKICAgICAgICAiLS1tYXRjaCIsIGYie3RhZ19w -cmVmaXh9W1s6ZGlnaXQ6XV0qIgogICAgXSwgY3dkPXJvb3QpCiAgICAjIC0t -bG9uZyB3YXMgYWRkZWQgaW4gZ2l0LTEuNS41CiAgICBpZiBkZXNjcmliZV9v -dXQgaXMgTm9uZToKICAgICAgICByYWlzZSBOb3RUaGlzTWV0aG9kKCInZ2l0 -IGRlc2NyaWJlJyBmYWlsZWQiKQogICAgZGVzY3JpYmVfb3V0ID0gZGVzY3Jp -YmVfb3V0LnN0cmlwKCkKICAgIGZ1bGxfb3V0LCByYyA9IHJ1bm5lcihHSVRT -LCBbInJldi1wYXJzZSIsICJIRUFEIl0sIGN3ZD1yb290KQogICAgaWYgZnVs -bF9vdXQgaXMgTm9uZToKICAgICAgICByYWlzZSBOb3RUaGlzTWV0aG9kKCIn -Z2l0IHJldi1wYXJzZScgZmFpbGVkIikKICAgIGZ1bGxfb3V0ID0gZnVsbF9v -dXQuc3RyaXAoKQoKICAgIHBpZWNlczogRGljdFtzdHIsIEFueV0gPSB7fQog -ICAgcGllY2VzWyJsb25nIl0gPSBmdWxsX291dAogICAgcGllY2VzWyJzaG9y -dCJdID0gZnVsbF9vdXRbOjddICAjIG1heWJlIGltcHJvdmVkIGxhdGVyCiAg -ICBwaWVjZXNbImVycm9yIl0gPSBOb25lCgogICAgYnJhbmNoX25hbWUsIHJj -ID0gcnVubmVyKEdJVFMsIFsicmV2LXBhcnNlIiwgIi0tYWJicmV2LXJlZiIs -ICJIRUFEIl0sCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgY3dkPXJv -b3QpCiAgICAjIC0tYWJicmV2LXJlZiB3YXMgYWRkZWQgaW4gZ2l0LTEuNi4z -CiAgICBpZiByYyAhPSAwIG9yIGJyYW5jaF9uYW1lIGlzIE5vbmU6CiAgICAg -ICAgcmFpc2UgTm90VGhpc01ldGhvZCgiJ2dpdCByZXYtcGFyc2UgLS1hYmJy -ZXYtcmVmJyByZXR1cm5lZCBlcnJvciIpCiAgICBicmFuY2hfbmFtZSA9IGJy -YW5jaF9uYW1lLnN0cmlwKCkKCiAgICBpZiBicmFuY2hfbmFtZSA9PSAiSEVB -RCI6CiAgICAgICAgIyBJZiB3ZSBhcmVuJ3QgZXhhY3RseSBvbiBhIGJyYW5j -aCwgcGljayBhIGJyYW5jaCB3aGljaCByZXByZXNlbnRzCiAgICAgICAgIyB0 -aGUgY3VycmVudCBjb21taXQuIElmIGFsbCBlbHNlIGZhaWxzLCB3ZSBhcmUg -b24gYSBicmFuY2hsZXNzCiAgICAgICAgIyBjb21taXQuCiAgICAgICAgYnJh -bmNoZXMsIHJjID0gcnVubmVyKEdJVFMsIFsiYnJhbmNoIiwgIi0tY29udGFp -bnMiXSwgY3dkPXJvb3QpCiAgICAgICAgIyAtLWNvbnRhaW5zIHdhcyBhZGRl -ZCBpbiBnaXQtMS41LjQKICAgICAgICBpZiByYyAhPSAwIG9yIGJyYW5jaGVz -IGlzIE5vbmU6CiAgICAgICAgICAgIHJhaXNlIE5vdFRoaXNNZXRob2QoIidn -aXQgYnJhbmNoIC0tY29udGFpbnMnIHJldHVybmVkIGVycm9yIikKICAgICAg -ICBicmFuY2hlcyA9IGJyYW5jaGVzLnNwbGl0KCJcbiIpCgogICAgICAgICMg -UmVtb3ZlIHRoZSBmaXJzdCBsaW5lIGlmIHdlJ3JlIHJ1bm5pbmcgZGV0YWNo -ZWQKICAgICAgICBpZiAiKCIgaW4gYnJhbmNoZXNbMF06CiAgICAgICAgICAg -IGJyYW5jaGVzLnBvcCgwKQoKICAgICAgICAjIFN0cmlwIG9mZiB0aGUgbGVh -ZGluZyAiKiAiIGZyb20gdGhlIGxpc3Qgb2YgYnJhbmNoZXMuCiAgICAgICAg -YnJhbmNoZXMgPSBbYnJhbmNoWzI6XSBmb3IgYnJhbmNoIGluIGJyYW5jaGVz -XQogICAgICAgIGlmICJtYXN0ZXIiIGluIGJyYW5jaGVzOgogICAgICAgICAg -ICBicmFuY2hfbmFtZSA9ICJtYXN0ZXIiCiAgICAgICAgZWxpZiBub3QgYnJh -bmNoZXM6CiAgICAgICAgICAgIGJyYW5jaF9uYW1lID0gTm9uZQogICAgICAg -IGVsc2U6CiAgICAgICAgICAgICMgUGljayB0aGUgZmlyc3QgYnJhbmNoIHRo -YXQgaXMgcmV0dXJuZWQuIEdvb2Qgb3IgYmFkLgogICAgICAgICAgICBicmFu -Y2hfbmFtZSA9IGJyYW5jaGVzWzBdCgogICAgcGllY2VzWyJicmFuY2giXSA9 -IGJyYW5jaF9uYW1lCgogICAgIyBwYXJzZSBkZXNjcmliZV9vdXQuIEl0IHdp -bGwgYmUgbGlrZSBUQUctTlVNLWdIRVhbLWRpcnR5XSBvciBIRVhbLWRpcnR5 -XQogICAgIyBUQUcgbWlnaHQgaGF2ZSBoeXBoZW5zLgogICAgZ2l0X2Rlc2Ny -aWJlID0gZGVzY3JpYmVfb3V0CgogICAgIyBsb29rIGZvciAtZGlydHkgc3Vm -Zml4CiAgICBkaXJ0eSA9IGdpdF9kZXNjcmliZS5lbmRzd2l0aCgiLWRpcnR5 -IikKICAgIHBpZWNlc1siZGlydHkiXSA9IGRpcnR5CiAgICBpZiBkaXJ0eToK -ICAgICAgICBnaXRfZGVzY3JpYmUgPSBnaXRfZGVzY3JpYmVbOmdpdF9kZXNj -cmliZS5yaW5kZXgoIi1kaXJ0eSIpXQoKICAgICMgbm93IHdlIGhhdmUgVEFH -LU5VTS1nSEVYIG9yIEhFWAoKICAgIGlmICItIiBpbiBnaXRfZGVzY3JpYmU6 -CiAgICAgICAgIyBUQUctTlVNLWdIRVgKICAgICAgICBtbyA9IHJlLnNlYXJj -aChyJ14oLispLShcZCspLWcoWzAtOWEtZl0rKSQnLCBnaXRfZGVzY3JpYmUp -CiAgICAgICAgaWYgbm90IG1vOgogICAgICAgICAgICAjIHVucGFyc2FibGUu -IE1heWJlIGdpdC1kZXNjcmliZSBpcyBtaXNiZWhhdmluZz8KICAgICAgICAg -ICAgcGllY2VzWyJlcnJvciJdID0gKCJ1bmFibGUgdG8gcGFyc2UgZ2l0LWRl -c2NyaWJlIG91dHB1dDogJyUlcyciCiAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAlJSBkZXNjcmliZV9vdXQpCiAgICAgICAgICAgIHJldHVybiBw -aWVjZXMKCiAgICAgICAgIyB0YWcKICAgICAgICBmdWxsX3RhZyA9IG1vLmdy -b3VwKDEpCiAgICAgICAgaWYgbm90IGZ1bGxfdGFnLnN0YXJ0c3dpdGgodGFn -X3ByZWZpeCk6CiAgICAgICAgICAgIGlmIHZlcmJvc2U6CiAgICAgICAgICAg -ICAgICBmbXQgPSAidGFnICclJXMnIGRvZXNuJ3Qgc3RhcnQgd2l0aCBwcmVm -aXggJyUlcyciCiAgICAgICAgICAgICAgICBwcmludChmbXQgJSUgKGZ1bGxf -dGFnLCB0YWdfcHJlZml4KSkKICAgICAgICAgICAgcGllY2VzWyJlcnJvciJd -ID0gKCJ0YWcgJyUlcycgZG9lc24ndCBzdGFydCB3aXRoIHByZWZpeCAnJSVz -JyIKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICUlIChmdWxsX3Rh -ZywgdGFnX3ByZWZpeCkpCiAgICAgICAgICAgIHJldHVybiBwaWVjZXMKICAg -ICAgICBwaWVjZXNbImNsb3Nlc3QtdGFnIl0gPSBmdWxsX3RhZ1tsZW4odGFn -X3ByZWZpeCk6XQoKICAgICAgICAjIGRpc3RhbmNlOiBudW1iZXIgb2YgY29t -bWl0cyBzaW5jZSB0YWcKICAgICAgICBwaWVjZXNbImRpc3RhbmNlIl0gPSBp -bnQobW8uZ3JvdXAoMikpCgogICAgICAgICMgY29tbWl0OiBzaG9ydCBoZXgg -cmV2aXNpb24gSUQKICAgICAgICBwaWVjZXNbInNob3J0Il0gPSBtby5ncm91 -cCgzKQoKICAgIGVsc2U6CiAgICAgICAgIyBIRVg6IG5vIHRhZ3MKICAgICAg -ICBwaWVjZXNbImNsb3Nlc3QtdGFnIl0gPSBOb25lCiAgICAgICAgb3V0LCBy -YyA9IHJ1bm5lcihHSVRTLCBbInJldi1saXN0IiwgIkhFQUQiLCAiLS1sZWZ0 -LXJpZ2h0Il0sIGN3ZD1yb290KQogICAgICAgIHBpZWNlc1siZGlzdGFuY2Ui -XSA9IGxlbihvdXQuc3BsaXQoKSkgICMgdG90YWwgbnVtYmVyIG9mIGNvbW1p -dHMKCiAgICAjIGNvbW1pdCBkYXRlOiBzZWUgSVNPLTg2MDEgY29tbWVudCBp -biBnaXRfdmVyc2lvbnNfZnJvbV9rZXl3b3JkcygpCiAgICBkYXRlID0gcnVu -bmVyKEdJVFMsIFsic2hvdyIsICItcyIsICItLWZvcm1hdD0lJWNpIiwgIkhF -QUQiXSwgY3dkPXJvb3QpWzBdLnN0cmlwKCkKICAgICMgVXNlIG9ubHkgdGhl -IGxhc3QgbGluZS4gIFByZXZpb3VzIGxpbmVzIG1heSBjb250YWluIEdQRyBz -aWduYXR1cmUKICAgICMgaW5mb3JtYXRpb24uCiAgICBkYXRlID0gZGF0ZS5z -cGxpdGxpbmVzKClbLTFdCiAgICBwaWVjZXNbImRhdGUiXSA9IGRhdGUuc3Ry -aXAoKS5yZXBsYWNlKCIgIiwgIlQiLCAxKS5yZXBsYWNlKCIgIiwgIiIsIDEp -CgogICAgcmV0dXJuIHBpZWNlcwoKCmRlZiBwbHVzX29yX2RvdChwaWVjZXM6 -IERpY3Rbc3RyLCBBbnldKSAtPiBzdHI6CiAgICAiIiJSZXR1cm4gYSArIGlm -IHdlIGRvbid0IGFscmVhZHkgaGF2ZSBvbmUsIGVsc2UgcmV0dXJuIGEgLiIi -IgogICAgaWYgIisiIGluIHBpZWNlcy5nZXQoImNsb3Nlc3QtdGFnIiwgIiIp -OgogICAgICAgIHJldHVybiAiLiIKICAgIHJldHVybiAiKyIKCgpkZWYgcmVu -ZGVyX3BlcDQ0MChwaWVjZXM6IERpY3Rbc3RyLCBBbnldKSAtPiBzdHI6CiAg -ICAiIiJCdWlsZCB1cCB2ZXJzaW9uIHN0cmluZywgd2l0aCBwb3N0LXJlbGVh -c2UgImxvY2FsIHZlcnNpb24gaWRlbnRpZmllciIuCgogICAgT3VyIGdvYWw6 -IFRBR1srRElTVEFOQ0UuZ0hFWFsuZGlydHldXSAuIE5vdGUgdGhhdCBpZiB5 -b3UKICAgIGdldCBhIHRhZ2dlZCBidWlsZCBhbmQgdGhlbiBkaXJ0eSBpdCwg -eW91J2xsIGdldCBUQUcrMC5nSEVYLmRpcnR5CgogICAgRXhjZXB0aW9uczoK -ICAgIDE6IG5vIHRhZ3MuIGdpdF9kZXNjcmliZSB3YXMganVzdCBIRVguIDAr -dW50YWdnZWQuRElTVEFOQ0UuZ0hFWFsuZGlydHldCiAgICAiIiIKICAgIGlm -IHBpZWNlc1siY2xvc2VzdC10YWciXToKICAgICAgICByZW5kZXJlZCA9IHBp -ZWNlc1siY2xvc2VzdC10YWciXQogICAgICAgIGlmIHBpZWNlc1siZGlzdGFu -Y2UiXSBvciBwaWVjZXNbImRpcnR5Il06CiAgICAgICAgICAgIHJlbmRlcmVk -ICs9IHBsdXNfb3JfZG90KHBpZWNlcykKICAgICAgICAgICAgcmVuZGVyZWQg -Kz0gIiUlZC5nJSVzIiAlJSAocGllY2VzWyJkaXN0YW5jZSJdLCBwaWVjZXNb -InNob3J0Il0pCiAgICAgICAgICAgIGlmIHBpZWNlc1siZGlydHkiXToKICAg -ICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGlydHkiCiAgICBlbHNlOgog -ICAgICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVyZWQgPSAiMCt1 -bnRhZ2dlZC4lJWQuZyUlcyIgJSUgKHBpZWNlc1siZGlzdGFuY2UiXSwKICAg -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGllY2Vz -WyJzaG9ydCJdKQogICAgICAgIGlmIHBpZWNlc1siZGlydHkiXToKICAgICAg -ICAgICAgcmVuZGVyZWQgKz0gIi5kaXJ0eSIKICAgIHJldHVybiByZW5kZXJl -ZAoKCmRlZiByZW5kZXJfcGVwNDQwX2JyYW5jaChwaWVjZXM6IERpY3Rbc3Ry -LCBBbnldKSAtPiBzdHI6CiAgICAiIiJUQUdbWy5kZXYwXStESVNUQU5DRS5n -SEVYWy5kaXJ0eV1dIC4KCiAgICBUaGUgIi5kZXYwIiBtZWFucyBub3QgbWFz -dGVyIGJyYW5jaC4gTm90ZSB0aGF0IC5kZXYwIHNvcnRzIGJhY2t3YXJkcwog -ICAgKGEgZmVhdHVyZSBicmFuY2ggd2lsbCBhcHBlYXIgIm9sZGVyIiB0aGFu -IHRoZSBtYXN0ZXIgYnJhbmNoKS4KCiAgICBFeGNlcHRpb25zOgogICAgMTog -bm8gdGFncy4gMFsuZGV2MF0rdW50YWdnZWQuRElTVEFOQ0UuZ0hFWFsuZGly -dHldCiAgICAiIiIKICAgIGlmIHBpZWNlc1siY2xvc2VzdC10YWciXToKICAg -ICAgICByZW5kZXJlZCA9IHBpZWNlc1siY2xvc2VzdC10YWciXQogICAgICAg -IGlmIHBpZWNlc1siZGlzdGFuY2UiXSBvciBwaWVjZXNbImRpcnR5Il06CiAg -ICAgICAgICAgIGlmIHBpZWNlc1siYnJhbmNoIl0gIT0gIm1hc3RlciI6CiAg -ICAgICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAgICAg -IHJlbmRlcmVkICs9IHBsdXNfb3JfZG90KHBpZWNlcykKICAgICAgICAgICAg -cmVuZGVyZWQgKz0gIiUlZC5nJSVzIiAlJSAocGllY2VzWyJkaXN0YW5jZSJd -LCBwaWVjZXNbInNob3J0Il0pCiAgICAgICAgICAgIGlmIHBpZWNlc1siZGly -dHkiXToKICAgICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGlydHkiCiAg -ICBlbHNlOgogICAgICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVy -ZWQgPSAiMCIKICAgICAgICBpZiBwaWVjZXNbImJyYW5jaCJdICE9ICJtYXN0 -ZXIiOgogICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAg -cmVuZGVyZWQgKz0gIit1bnRhZ2dlZC4lJWQuZyUlcyIgJSUgKHBpZWNlc1si -ZGlzdGFuY2UiXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAgcGllY2VzWyJzaG9ydCJdKQogICAgICAgIGlmIHBpZWNlc1si -ZGlydHkiXToKICAgICAgICAgICAgcmVuZGVyZWQgKz0gIi5kaXJ0eSIKICAg -IHJldHVybiByZW5kZXJlZAoKCmRlZiBwZXA0NDBfc3BsaXRfcG9zdCh2ZXI6 -IHN0cikgLT4gVHVwbGVbc3RyLCBPcHRpb25hbFtpbnRdXToKICAgICIiIlNw -bGl0IHBlcDQ0MCB2ZXJzaW9uIHN0cmluZyBhdCB0aGUgcG9zdC1yZWxlYXNl -IHNlZ21lbnQuCgogICAgUmV0dXJucyB0aGUgcmVsZWFzZSBzZWdtZW50cyBi -ZWZvcmUgdGhlIHBvc3QtcmVsZWFzZSBhbmQgdGhlCiAgICBwb3N0LXJlbGVh -c2UgdmVyc2lvbiBudW1iZXIgKG9yIC0xIGlmIG5vIHBvc3QtcmVsZWFzZSBz -ZWdtZW50IGlzIHByZXNlbnQpLgogICAgIiIiCiAgICB2YyA9IHN0ci5zcGxp -dCh2ZXIsICIucG9zdCIpCiAgICByZXR1cm4gdmNbMF0sIGludCh2Y1sxXSBv -ciAwKSBpZiBsZW4odmMpID09IDIgZWxzZSBOb25lCgoKZGVmIHJlbmRlcl9w -ZXA0NDBfcHJlKHBpZWNlczogRGljdFtzdHIsIEFueV0pIC0+IHN0cjoKICAg -ICIiIlRBR1sucG9zdE4uZGV2RElTVEFOQ0VdIC0tIE5vIC1kaXJ0eS4KCiAg -ICBFeGNlcHRpb25zOgogICAgMTogbm8gdGFncy4gMC5wb3N0MC5kZXZESVNU -QU5DRQogICAgIiIiCiAgICBpZiBwaWVjZXNbImNsb3Nlc3QtdGFnIl06CiAg -ICAgICAgaWYgcGllY2VzWyJkaXN0YW5jZSJdOgogICAgICAgICAgICAjIHVw -ZGF0ZSB0aGUgcG9zdCByZWxlYXNlIHNlZ21lbnQKICAgICAgICAgICAgdGFn -X3ZlcnNpb24sIHBvc3RfdmVyc2lvbiA9IHBlcDQ0MF9zcGxpdF9wb3N0KHBp -ZWNlc1siY2xvc2VzdC10YWciXSkKICAgICAgICAgICAgcmVuZGVyZWQgPSB0 -YWdfdmVyc2lvbgogICAgICAgICAgICBpZiBwb3N0X3ZlcnNpb24gaXMgbm90 -IE5vbmU6CiAgICAgICAgICAgICAgICByZW5kZXJlZCArPSAiLnBvc3QlJWQu -ZGV2JSVkIiAlJSAocG9zdF92ZXJzaW9uICsgMSwgcGllY2VzWyJkaXN0YW5j -ZSJdKQogICAgICAgICAgICBlbHNlOgogICAgICAgICAgICAgICAgcmVuZGVy -ZWQgKz0gIi5wb3N0MC5kZXYlJWQiICUlIChwaWVjZXNbImRpc3RhbmNlIl0p -CiAgICAgICAgZWxzZToKICAgICAgICAgICAgIyBubyBjb21taXRzLCB1c2Ug -dGhlIHRhZyBhcyB0aGUgdmVyc2lvbgogICAgICAgICAgICByZW5kZXJlZCA9 -IHBpZWNlc1siY2xvc2VzdC10YWciXQogICAgZWxzZToKICAgICAgICAjIGV4 -Y2VwdGlvbiAjMQogICAgICAgIHJlbmRlcmVkID0gIjAucG9zdDAuZGV2JSVk -IiAlJSBwaWVjZXNbImRpc3RhbmNlIl0KICAgIHJldHVybiByZW5kZXJlZAoK -CmRlZiByZW5kZXJfcGVwNDQwX3Bvc3QocGllY2VzOiBEaWN0W3N0ciwgQW55 -XSkgLT4gc3RyOgogICAgIiIiVEFHWy5wb3N0RElTVEFOQ0VbLmRldjBdK2dI -RVhdIC4KCiAgICBUaGUgIi5kZXYwIiBtZWFucyBkaXJ0eS4gTm90ZSB0aGF0 -IC5kZXYwIHNvcnRzIGJhY2t3YXJkcwogICAgKGEgZGlydHkgdHJlZSB3aWxs -IGFwcGVhciAib2xkZXIiIHRoYW4gdGhlIGNvcnJlc3BvbmRpbmcgY2xlYW4g -b25lKSwKICAgIGJ1dCB5b3Ugc2hvdWxkbid0IGJlIHJlbGVhc2luZyBzb2Z0 -d2FyZSB3aXRoIC1kaXJ0eSBhbnl3YXlzLgoKICAgIEV4Y2VwdGlvbnM6CiAg -ICAxOiBubyB0YWdzLiAwLnBvc3RESVNUQU5DRVsuZGV2MF0KICAgICIiIgog -ICAgaWYgcGllY2VzWyJjbG9zZXN0LXRhZyJdOgogICAgICAgIHJlbmRlcmVk -ID0gcGllY2VzWyJjbG9zZXN0LXRhZyJdCiAgICAgICAgaWYgcGllY2VzWyJk -aXN0YW5jZSJdIG9yIHBpZWNlc1siZGlydHkiXToKICAgICAgICAgICAgcmVu -ZGVyZWQgKz0gIi5wb3N0JSVkIiAlJSBwaWVjZXNbImRpc3RhbmNlIl0KICAg -ICAgICAgICAgaWYgcGllY2VzWyJkaXJ0eSJdOgogICAgICAgICAgICAgICAg -cmVuZGVyZWQgKz0gIi5kZXYwIgogICAgICAgICAgICByZW5kZXJlZCArPSBw -bHVzX29yX2RvdChwaWVjZXMpCiAgICAgICAgICAgIHJlbmRlcmVkICs9ICJn -JSVzIiAlJSBwaWVjZXNbInNob3J0Il0KICAgIGVsc2U6CiAgICAgICAgIyBl -eGNlcHRpb24gIzEKICAgICAgICByZW5kZXJlZCA9ICIwLnBvc3QlJWQiICUl -IHBpZWNlc1siZGlzdGFuY2UiXQogICAgICAgIGlmIHBpZWNlc1siZGlydHki -XToKICAgICAgICAgICAgcmVuZGVyZWQgKz0gIi5kZXYwIgogICAgICAgIHJl -bmRlcmVkICs9ICIrZyUlcyIgJSUgcGllY2VzWyJzaG9ydCJdCiAgICByZXR1 -cm4gcmVuZGVyZWQKCgpkZWYgcmVuZGVyX3BlcDQ0MF9wb3N0X2JyYW5jaChw -aWVjZXM6IERpY3Rbc3RyLCBBbnldKSAtPiBzdHI6CiAgICAiIiJUQUdbLnBv -c3RESVNUQU5DRVsuZGV2MF0rZ0hFWFsuZGlydHldXSAuCgogICAgVGhlICIu -ZGV2MCIgbWVhbnMgbm90IG1hc3RlciBicmFuY2guCgogICAgRXhjZXB0aW9u -czoKICAgIDE6IG5vIHRhZ3MuIDAucG9zdERJU1RBTkNFWy5kZXYwXStnSEVY -Wy5kaXJ0eV0KICAgICIiIgogICAgaWYgcGllY2VzWyJjbG9zZXN0LXRhZyJd -OgogICAgICAgIHJlbmRlcmVkID0gcGllY2VzWyJjbG9zZXN0LXRhZyJdCiAg -ICAgICAgaWYgcGllY2VzWyJkaXN0YW5jZSJdIG9yIHBpZWNlc1siZGlydHki -XToKICAgICAgICAgICAgcmVuZGVyZWQgKz0gIi5wb3N0JSVkIiAlJSBwaWVj -ZXNbImRpc3RhbmNlIl0KICAgICAgICAgICAgaWYgcGllY2VzWyJicmFuY2gi -XSAhPSAibWFzdGVyIjoKICAgICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIu -ZGV2MCIKICAgICAgICAgICAgcmVuZGVyZWQgKz0gcGx1c19vcl9kb3QocGll -Y2VzKQogICAgICAgICAgICByZW5kZXJlZCArPSAiZyUlcyIgJSUgcGllY2Vz -WyJzaG9ydCJdCiAgICAgICAgICAgIGlmIHBpZWNlc1siZGlydHkiXToKICAg -ICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGlydHkiCiAgICBlbHNlOgog -ICAgICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVyZWQgPSAiMC5w -b3N0JSVkIiAlJSBwaWVjZXNbImRpc3RhbmNlIl0KICAgICAgICBpZiBwaWVj -ZXNbImJyYW5jaCJdICE9ICJtYXN0ZXIiOgogICAgICAgICAgICByZW5kZXJl -ZCArPSAiLmRldjAiCiAgICAgICAgcmVuZGVyZWQgKz0gIitnJSVzIiAlJSBw -aWVjZXNbInNob3J0Il0KICAgICAgICBpZiBwaWVjZXNbImRpcnR5Il06CiAg -ICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGlydHkiCiAgICByZXR1cm4gcmVu -ZGVyZWQKCgpkZWYgcmVuZGVyX3BlcDQ0MF9vbGQocGllY2VzOiBEaWN0W3N0 -ciwgQW55XSkgLT4gc3RyOgogICAgIiIiVEFHWy5wb3N0RElTVEFOQ0VbLmRl -djBdXSAuCgogICAgVGhlICIuZGV2MCIgbWVhbnMgZGlydHkuCgogICAgRXhj -ZXB0aW9uczoKICAgIDE6IG5vIHRhZ3MuIDAucG9zdERJU1RBTkNFWy5kZXYw -XQogICAgIiIiCiAgICBpZiBwaWVjZXNbImNsb3Nlc3QtdGFnIl06CiAgICAg -ICAgcmVuZGVyZWQgPSBwaWVjZXNbImNsb3Nlc3QtdGFnIl0KICAgICAgICBp -ZiBwaWVjZXNbImRpc3RhbmNlIl0gb3IgcGllY2VzWyJkaXJ0eSJdOgogICAg -ICAgICAgICByZW5kZXJlZCArPSAiLnBvc3QlJWQiICUlIHBpZWNlc1siZGlz -dGFuY2UiXQogICAgICAgICAgICBpZiBwaWVjZXNbImRpcnR5Il06CiAgICAg -ICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICBlbHNlOgogICAg -ICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVyZWQgPSAiMC5wb3N0 -JSVkIiAlJSBwaWVjZXNbImRpc3RhbmNlIl0KICAgICAgICBpZiBwaWVjZXNb -ImRpcnR5Il06CiAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGV2MCIKICAg -IHJldHVybiByZW5kZXJlZAoKCmRlZiByZW5kZXJfZ2l0X2Rlc2NyaWJlKHBp -ZWNlczogRGljdFtzdHIsIEFueV0pIC0+IHN0cjoKICAgICIiIlRBR1stRElT -VEFOQ0UtZ0hFWF1bLWRpcnR5XS4KCiAgICBMaWtlICdnaXQgZGVzY3JpYmUg -LS10YWdzIC0tZGlydHkgLS1hbHdheXMnLgoKICAgIEV4Y2VwdGlvbnM6CiAg -ICAxOiBubyB0YWdzLiBIRVhbLWRpcnR5XSAgKG5vdGU6IG5vICdnJyBwcmVm -aXgpCiAgICAiIiIKICAgIGlmIHBpZWNlc1siY2xvc2VzdC10YWciXToKICAg -ICAgICByZW5kZXJlZCA9IHBpZWNlc1siY2xvc2VzdC10YWciXQogICAgICAg -IGlmIHBpZWNlc1siZGlzdGFuY2UiXToKICAgICAgICAgICAgcmVuZGVyZWQg -Kz0gIi0lJWQtZyUlcyIgJSUgKHBpZWNlc1siZGlzdGFuY2UiXSwgcGllY2Vz -WyJzaG9ydCJdKQogICAgZWxzZToKICAgICAgICAjIGV4Y2VwdGlvbiAjMQog -ICAgICAgIHJlbmRlcmVkID0gcGllY2VzWyJzaG9ydCJdCiAgICBpZiBwaWVj -ZXNbImRpcnR5Il06CiAgICAgICAgcmVuZGVyZWQgKz0gIi1kaXJ0eSIKICAg -IHJldHVybiByZW5kZXJlZAoKCmRlZiByZW5kZXJfZ2l0X2Rlc2NyaWJlX2xv -bmcocGllY2VzOiBEaWN0W3N0ciwgQW55XSkgLT4gc3RyOgogICAgIiIiVEFH -LURJU1RBTkNFLWdIRVhbLWRpcnR5XS4KCiAgICBMaWtlICdnaXQgZGVzY3Jp -YmUgLS10YWdzIC0tZGlydHkgLS1hbHdheXMgLWxvbmcnLgogICAgVGhlIGRp -c3RhbmNlL2hhc2ggaXMgdW5jb25kaXRpb25hbC4KCiAgICBFeGNlcHRpb25z -OgogICAgMTogbm8gdGFncy4gSEVYWy1kaXJ0eV0gIChub3RlOiBubyAnZycg -cHJlZml4KQogICAgIiIiCiAgICBpZiBwaWVjZXNbImNsb3Nlc3QtdGFnIl06 -CiAgICAgICAgcmVuZGVyZWQgPSBwaWVjZXNbImNsb3Nlc3QtdGFnIl0KICAg -ICAgICByZW5kZXJlZCArPSAiLSUlZC1nJSVzIiAlJSAocGllY2VzWyJkaXN0 -YW5jZSJdLCBwaWVjZXNbInNob3J0Il0pCiAgICBlbHNlOgogICAgICAgICMg -ZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVyZWQgPSBwaWVjZXNbInNob3J0 -Il0KICAgIGlmIHBpZWNlc1siZGlydHkiXToKICAgICAgICByZW5kZXJlZCAr -PSAiLWRpcnR5IgogICAgcmV0dXJuIHJlbmRlcmVkCgoKZGVmIHJlbmRlcihw -aWVjZXM6IERpY3Rbc3RyLCBBbnldLCBzdHlsZTogc3RyKSAtPiBEaWN0W3N0 -ciwgQW55XToKICAgICIiIlJlbmRlciB0aGUgZ2l2ZW4gdmVyc2lvbiBwaWVj -ZXMgaW50byB0aGUgcmVxdWVzdGVkIHN0eWxlLiIiIgogICAgaWYgcGllY2Vz -WyJlcnJvciJdOgogICAgICAgIHJldHVybiB7InZlcnNpb24iOiAidW5rbm93 -biIsCiAgICAgICAgICAgICAgICAiZnVsbC1yZXZpc2lvbmlkIjogcGllY2Vz -LmdldCgibG9uZyIpLAogICAgICAgICAgICAgICAgImRpcnR5IjogTm9uZSwK -ICAgICAgICAgICAgICAgICJlcnJvciI6IHBpZWNlc1siZXJyb3IiXSwKICAg -ICAgICAgICAgICAgICJkYXRlIjogTm9uZX0KCiAgICBpZiBub3Qgc3R5bGUg -b3Igc3R5bGUgPT0gImRlZmF1bHQiOgogICAgICAgIHN0eWxlID0gInBlcDQ0 -MCIgICMgdGhlIGRlZmF1bHQKCiAgICBpZiBzdHlsZSA9PSAicGVwNDQwIjoK -ICAgICAgICByZW5kZXJlZCA9IHJlbmRlcl9wZXA0NDAocGllY2VzKQogICAg -ZWxpZiBzdHlsZSA9PSAicGVwNDQwLWJyYW5jaCI6CiAgICAgICAgcmVuZGVy -ZWQgPSByZW5kZXJfcGVwNDQwX2JyYW5jaChwaWVjZXMpCiAgICBlbGlmIHN0 -eWxlID09ICJwZXA0NDAtcHJlIjoKICAgICAgICByZW5kZXJlZCA9IHJlbmRl -cl9wZXA0NDBfcHJlKHBpZWNlcykKICAgIGVsaWYgc3R5bGUgPT0gInBlcDQ0 -MC1wb3N0IjoKICAgICAgICByZW5kZXJlZCA9IHJlbmRlcl9wZXA0NDBfcG9z -dChwaWVjZXMpCiAgICBlbGlmIHN0eWxlID09ICJwZXA0NDAtcG9zdC1icmFu -Y2giOgogICAgICAgIHJlbmRlcmVkID0gcmVuZGVyX3BlcDQ0MF9wb3N0X2Jy -YW5jaChwaWVjZXMpCiAgICBlbGlmIHN0eWxlID09ICJwZXA0NDAtb2xkIjoK -ICAgICAgICByZW5kZXJlZCA9IHJlbmRlcl9wZXA0NDBfb2xkKHBpZWNlcykK -ICAgIGVsaWYgc3R5bGUgPT0gImdpdC1kZXNjcmliZSI6CiAgICAgICAgcmVu -ZGVyZWQgPSByZW5kZXJfZ2l0X2Rlc2NyaWJlKHBpZWNlcykKICAgIGVsaWYg -c3R5bGUgPT0gImdpdC1kZXNjcmliZS1sb25nIjoKICAgICAgICByZW5kZXJl -ZCA9IHJlbmRlcl9naXRfZGVzY3JpYmVfbG9uZyhwaWVjZXMpCiAgICBlbHNl -OgogICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoInVua25vd24gc3R5bGUgJyUl -cyciICUlIHN0eWxlKQoKICAgIHJldHVybiB7InZlcnNpb24iOiByZW5kZXJl -ZCwgImZ1bGwtcmV2aXNpb25pZCI6IHBpZWNlc1sibG9uZyJdLAogICAgICAg -ICAgICAiZGlydHkiOiBwaWVjZXNbImRpcnR5Il0sICJlcnJvciI6IE5vbmUs -CiAgICAgICAgICAgICJkYXRlIjogcGllY2VzLmdldCgiZGF0ZSIpfQoKCmRl -ZiBnZXRfdmVyc2lvbnMoKSAtPiBEaWN0W3N0ciwgQW55XToKICAgICIiIkdl -dCB2ZXJzaW9uIGluZm9ybWF0aW9uIG9yIHJldHVybiBkZWZhdWx0IGlmIHVu -YWJsZSB0byBkbyBzby4iIiIKICAgICMgSSBhbSBpbiBfdmVyc2lvbi5weSwg -d2hpY2ggbGl2ZXMgYXQgUk9PVC9WRVJTSU9ORklMRV9TT1VSQ0UuIElmIHdl -IGhhdmUKICAgICMgX19maWxlX18sIHdlIGNhbiB3b3JrIGJhY2t3YXJkcyBm -cm9tIHRoZXJlIHRvIHRoZSByb290LiBTb21lCiAgICAjIHB5MmV4ZS9iYmZy -ZWV6ZS9ub24tQ1B5dGhvbiBpbXBsZW1lbnRhdGlvbnMgZG9uJ3QgZG8gX19m -aWxlX18sIGluIHdoaWNoCiAgICAjIGNhc2Ugd2UgY2FuIG9ubHkgdXNlIGV4 -cGFuZGVkIGtleXdvcmRzLgoKICAgIGNmZyA9IGdldF9jb25maWcoKQogICAg -dmVyYm9zZSA9IGNmZy52ZXJib3NlCgogICAgdHJ5OgogICAgICAgIHJldHVy -biBnaXRfdmVyc2lvbnNfZnJvbV9rZXl3b3JkcyhnZXRfa2V5d29yZHMoKSwg -Y2ZnLnRhZ19wcmVmaXgsCiAgICAgICAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAgICAgIHZlcmJvc2UpCiAgICBleGNlcHQgTm90VGhpc01ldGhv -ZDoKICAgICAgICBwYXNzCgogICAgdHJ5OgogICAgICAgIHJvb3QgPSBvcy5w -YXRoLnJlYWxwYXRoKF9fZmlsZV9fKQogICAgICAgICMgdmVyc2lvbmZpbGVf -c291cmNlIGlzIHRoZSByZWxhdGl2ZSBwYXRoIGZyb20gdGhlIHRvcCBvZiB0 -aGUgc291cmNlCiAgICAgICAgIyB0cmVlICh3aGVyZSB0aGUgLmdpdCBkaXJl -Y3RvcnkgbWlnaHQgbGl2ZSkgdG8gdGhpcyBmaWxlLiBJbnZlcnQKICAgICAg -ICAjIHRoaXMgdG8gZmluZCB0aGUgcm9vdCBmcm9tIF9fZmlsZV9fLgogICAg -ICAgIGZvciBfIGluIGNmZy52ZXJzaW9uZmlsZV9zb3VyY2Uuc3BsaXQoJy8n -KToKICAgICAgICAgICAgcm9vdCA9IG9zLnBhdGguZGlybmFtZShyb290KQog -ICAgZXhjZXB0IE5hbWVFcnJvcjoKICAgICAgICByZXR1cm4geyJ2ZXJzaW9u -IjogIjArdW5rbm93biIsICJmdWxsLXJldmlzaW9uaWQiOiBOb25lLAogICAg -ICAgICAgICAgICAgImRpcnR5IjogTm9uZSwKICAgICAgICAgICAgICAgICJl -cnJvciI6ICJ1bmFibGUgdG8gZmluZCByb290IG9mIHNvdXJjZSB0cmVlIiwK -ICAgICAgICAgICAgICAgICJkYXRlIjogTm9uZX0KCiAgICB0cnk6CiAgICAg -ICAgcGllY2VzID0gZ2l0X3BpZWNlc19mcm9tX3ZjcyhjZmcudGFnX3ByZWZp -eCwgcm9vdCwgdmVyYm9zZSkKICAgICAgICByZXR1cm4gcmVuZGVyKHBpZWNl -cywgY2ZnLnN0eWxlKQogICAgZXhjZXB0IE5vdFRoaXNNZXRob2Q6CiAgICAg -ICAgcGFzcwoKICAgIHRyeToKICAgICAgICBpZiBjZmcucGFyZW50ZGlyX3By -ZWZpeDoKICAgICAgICAgICAgcmV0dXJuIHZlcnNpb25zX2Zyb21fcGFyZW50 -ZGlyKGNmZy5wYXJlbnRkaXJfcHJlZml4LCByb290LCB2ZXJib3NlKQogICAg -ZXhjZXB0IE5vdFRoaXNNZXRob2Q6CiAgICAgICAgcGFzcwoKICAgIHJldHVy -biB7InZlcnNpb24iOiAiMCt1bmtub3duIiwgImZ1bGwtcmV2aXNpb25pZCI6 -IE5vbmUsCiAgICAgICAgICAgICJkaXJ0eSI6IE5vbmUsCiAgICAgICAgICAg -ICJlcnJvciI6ICJ1bmFibGUgdG8gY29tcHV0ZSB2ZXJzaW9uIiwgImRhdGUi -OiBOb25lfQonJycKCgpAcmVnaXN0ZXJfdmNzX2hhbmRsZXIoImdpdCIsICJn -ZXRfa2V5d29yZHMiKQpkZWYgZ2l0X2dldF9rZXl3b3Jkcyh2ZXJzaW9uZmls -ZV9hYnM6IHN0cikgLT4gRGljdFtzdHIsIHN0cl06CiAgICAiIiJFeHRyYWN0 -IHZlcnNpb24gaW5mb3JtYXRpb24gZnJvbSB0aGUgZ2l2ZW4gZmlsZS4iIiIK -ICAgICMgdGhlIGNvZGUgZW1iZWRkZWQgaW4gX3ZlcnNpb24ucHkgY2FuIGp1 -c3QgZmV0Y2ggdGhlIHZhbHVlIG9mIHRoZXNlCiAgICAjIGtleXdvcmRzLiBX -aGVuIHVzZWQgZnJvbSBzZXR1cC5weSwgd2UgZG9uJ3Qgd2FudCB0byBpbXBv -cnQgX3ZlcnNpb24ucHksCiAgICAjIHNvIHdlIGRvIGl0IHdpdGggYSByZWdl -eHAgaW5zdGVhZC4gVGhpcyBmdW5jdGlvbiBpcyBub3QgdXNlZCBmcm9tCiAg -ICAjIF92ZXJzaW9uLnB5LgogICAga2V5d29yZHM6IERpY3Rbc3RyLCBzdHJd -ID0ge30KICAgIHRyeToKICAgICAgICB3aXRoIG9wZW4odmVyc2lvbmZpbGVf -YWJzLCAiciIpIGFzIGZvYmo6CiAgICAgICAgICAgIGZvciBsaW5lIGluIGZv -Ymo6CiAgICAgICAgICAgICAgICBpZiBsaW5lLnN0cmlwKCkuc3RhcnRzd2l0 -aCgiZ2l0X3JlZm5hbWVzID0iKToKICAgICAgICAgICAgICAgICAgICBtbyA9 -IHJlLnNlYXJjaChyJz1ccyoiKC4qKSInLCBsaW5lKQogICAgICAgICAgICAg -ICAgICAgIGlmIG1vOgogICAgICAgICAgICAgICAgICAgICAgICBrZXl3b3Jk -c1sicmVmbmFtZXMiXSA9IG1vLmdyb3VwKDEpCiAgICAgICAgICAgICAgICBp -ZiBsaW5lLnN0cmlwKCkuc3RhcnRzd2l0aCgiZ2l0X2Z1bGwgPSIpOgogICAg -ICAgICAgICAgICAgICAgIG1vID0gcmUuc2VhcmNoKHInPVxzKiIoLiopIics -IGxpbmUpCiAgICAgICAgICAgICAgICAgICAgaWYgbW86CiAgICAgICAgICAg -ICAgICAgICAgICAgIGtleXdvcmRzWyJmdWxsIl0gPSBtby5ncm91cCgxKQog -ICAgICAgICAgICAgICAgaWYgbGluZS5zdHJpcCgpLnN0YXJ0c3dpdGgoImdp -dF9kYXRlID0iKToKICAgICAgICAgICAgICAgICAgICBtbyA9IHJlLnNlYXJj -aChyJz1ccyoiKC4qKSInLCBsaW5lKQogICAgICAgICAgICAgICAgICAgIGlm -IG1vOgogICAgICAgICAgICAgICAgICAgICAgICBrZXl3b3Jkc1siZGF0ZSJd -ID0gbW8uZ3JvdXAoMSkKICAgIGV4Y2VwdCBPU0Vycm9yOgogICAgICAgIHBh -c3MKICAgIHJldHVybiBrZXl3b3JkcwoKCkByZWdpc3Rlcl92Y3NfaGFuZGxl -cigiZ2l0IiwgImtleXdvcmRzIikKZGVmIGdpdF92ZXJzaW9uc19mcm9tX2tl -eXdvcmRzKAogICAga2V5d29yZHM6IERpY3Rbc3RyLCBzdHJdLAogICAgdGFn -X3ByZWZpeDogc3RyLAogICAgdmVyYm9zZTogYm9vbCwKKSAtPiBEaWN0W3N0 -ciwgQW55XToKICAgICIiIkdldCB2ZXJzaW9uIGluZm9ybWF0aW9uIGZyb20g -Z2l0IGtleXdvcmRzLiIiIgogICAgaWYgInJlZm5hbWVzIiBub3QgaW4ga2V5 -d29yZHM6CiAgICAgICAgcmFpc2UgTm90VGhpc01ldGhvZCgiU2hvcnQgdmVy -c2lvbiBmaWxlIGZvdW5kIikKICAgIGRhdGUgPSBrZXl3b3Jkcy5nZXQoImRh -dGUiKQogICAgaWYgZGF0ZSBpcyBub3QgTm9uZToKICAgICAgICAjIFVzZSBv -bmx5IHRoZSBsYXN0IGxpbmUuICBQcmV2aW91cyBsaW5lcyBtYXkgY29udGFp -biBHUEcgc2lnbmF0dXJlCiAgICAgICAgIyBpbmZvcm1hdGlvbi4KICAgICAg -ICBkYXRlID0gZGF0ZS5zcGxpdGxpbmVzKClbLTFdCgogICAgICAgICMgZ2l0 -LTIuMi4wIGFkZGVkICIlY0kiLCB3aGljaCBleHBhbmRzIHRvIGFuIElTTy04 -NjAxIC1jb21wbGlhbnQKICAgICAgICAjIGRhdGVzdGFtcC4gSG93ZXZlciB3 -ZSBwcmVmZXIgIiVjaSIgKHdoaWNoIGV4cGFuZHMgdG8gYW4gIklTTy04NjAx -CiAgICAgICAgIyAtbGlrZSIgc3RyaW5nLCB3aGljaCB3ZSBtdXN0IHRoZW4g -ZWRpdCB0byBtYWtlIGNvbXBsaWFudCksIGJlY2F1c2UKICAgICAgICAjIGl0 -J3MgYmVlbiBhcm91bmQgc2luY2UgZ2l0LTEuNS4zLCBhbmQgaXQncyB0b28g -ZGlmZmljdWx0IHRvCiAgICAgICAgIyBkaXNjb3ZlciB3aGljaCB2ZXJzaW9u -IHdlJ3JlIHVzaW5nLCBvciB0byB3b3JrIGFyb3VuZCB1c2luZyBhbgogICAg -ICAgICMgb2xkZXIgb25lLgogICAgICAgIGRhdGUgPSBkYXRlLnN0cmlwKCku -cmVwbGFjZSgiICIsICJUIiwgMSkucmVwbGFjZSgiICIsICIiLCAxKQogICAg -cmVmbmFtZXMgPSBrZXl3b3Jkc1sicmVmbmFtZXMiXS5zdHJpcCgpCiAgICBp -ZiByZWZuYW1lcy5zdGFydHN3aXRoKCIkRm9ybWF0Iik6CiAgICAgICAgaWYg -dmVyYm9zZToKICAgICAgICAgICAgcHJpbnQoImtleXdvcmRzIGFyZSB1bmV4 -cGFuZGVkLCBub3QgdXNpbmciKQogICAgICAgIHJhaXNlIE5vdFRoaXNNZXRo -b2QoInVuZXhwYW5kZWQga2V5d29yZHMsIG5vdCBhIGdpdC1hcmNoaXZlIHRh -cmJhbGwiKQogICAgcmVmcyA9IHtyLnN0cmlwKCkgZm9yIHIgaW4gcmVmbmFt -ZXMuc3RyaXAoIigpIikuc3BsaXQoIiwiKX0KICAgICMgc3RhcnRpbmcgaW4g -Z2l0LTEuOC4zLCB0YWdzIGFyZSBsaXN0ZWQgYXMgInRhZzogZm9vLTEuMCIg -aW5zdGVhZCBvZgogICAgIyBqdXN0ICJmb28tMS4wIi4gSWYgd2Ugc2VlIGEg -InRhZzogIiBwcmVmaXgsIHByZWZlciB0aG9zZS4KICAgIFRBRyA9ICJ0YWc6 -ICIKICAgIHRhZ3MgPSB7cltsZW4oVEFHKTpdIGZvciByIGluIHJlZnMgaWYg -ci5zdGFydHN3aXRoKFRBRyl9CiAgICBpZiBub3QgdGFnczoKICAgICAgICAj -IEVpdGhlciB3ZSdyZSB1c2luZyBnaXQgPCAxLjguMywgb3IgdGhlcmUgcmVh -bGx5IGFyZSBubyB0YWdzLiBXZSB1c2UKICAgICAgICAjIGEgaGV1cmlzdGlj -OiBhc3N1bWUgYWxsIHZlcnNpb24gdGFncyBoYXZlIGEgZGlnaXQuIFRoZSBv -bGQgZ2l0ICVkCiAgICAgICAgIyBleHBhbnNpb24gYmVoYXZlcyBsaWtlIGdp -dCBsb2cgLS1kZWNvcmF0ZT1zaG9ydCBhbmQgc3RyaXBzIG91dCB0aGUKICAg -ICAgICAjIHJlZnMvaGVhZHMvIGFuZCByZWZzL3RhZ3MvIHByZWZpeGVzIHRo -YXQgd291bGQgbGV0IHVzIGRpc3Rpbmd1aXNoCiAgICAgICAgIyBiZXR3ZWVu -IGJyYW5jaGVzIGFuZCB0YWdzLiBCeSBpZ25vcmluZyByZWZuYW1lcyB3aXRo -b3V0IGRpZ2l0cywgd2UKICAgICAgICAjIGZpbHRlciBvdXQgbWFueSBjb21t -b24gYnJhbmNoIG5hbWVzIGxpa2UgInJlbGVhc2UiIGFuZAogICAgICAgICMg -InN0YWJpbGl6YXRpb24iLCBhcyB3ZWxsIGFzICJIRUFEIiBhbmQgIm1hc3Rl -ciIuCiAgICAgICAgdGFncyA9IHtyIGZvciByIGluIHJlZnMgaWYgcmUuc2Vh -cmNoKHInXGQnLCByKX0KICAgICAgICBpZiB2ZXJib3NlOgogICAgICAgICAg -ICBwcmludCgiZGlzY2FyZGluZyAnJXMnLCBubyBkaWdpdHMiICUgIiwiLmpv -aW4ocmVmcyAtIHRhZ3MpKQogICAgaWYgdmVyYm9zZToKICAgICAgICBwcmlu -dCgibGlrZWx5IHRhZ3M6ICVzIiAlICIsIi5qb2luKHNvcnRlZCh0YWdzKSkp -CiAgICBmb3IgcmVmIGluIHNvcnRlZCh0YWdzKToKICAgICAgICAjIHNvcnRp -bmcgd2lsbCBwcmVmZXIgZS5nLiAiMi4wIiBvdmVyICIyLjByYzEiCiAgICAg -ICAgaWYgcmVmLnN0YXJ0c3dpdGgodGFnX3ByZWZpeCk6CiAgICAgICAgICAg -IHIgPSByZWZbbGVuKHRhZ19wcmVmaXgpOl0KICAgICAgICAgICAgIyBGaWx0 -ZXIgb3V0IHJlZnMgdGhhdCBleGFjdGx5IG1hdGNoIHByZWZpeCBvciB0aGF0 -IGRvbid0IHN0YXJ0CiAgICAgICAgICAgICMgd2l0aCBhIG51bWJlciBvbmNl -IHRoZSBwcmVmaXggaXMgc3RyaXBwZWQgKG1vc3RseSBhIGNvbmNlcm4KICAg -ICAgICAgICAgIyB3aGVuIHByZWZpeCBpcyAnJykKICAgICAgICAgICAgaWYg -bm90IHJlLm1hdGNoKHInXGQnLCByKToKICAgICAgICAgICAgICAgIGNvbnRp -bnVlCiAgICAgICAgICAgIGlmIHZlcmJvc2U6CiAgICAgICAgICAgICAgICBw -cmludCgicGlja2luZyAlcyIgJSByKQogICAgICAgICAgICByZXR1cm4geyJ2 -ZXJzaW9uIjogciwKICAgICAgICAgICAgICAgICAgICAiZnVsbC1yZXZpc2lv -bmlkIjoga2V5d29yZHNbImZ1bGwiXS5zdHJpcCgpLAogICAgICAgICAgICAg -ICAgICAgICJkaXJ0eSI6IEZhbHNlLCAiZXJyb3IiOiBOb25lLAogICAgICAg -ICAgICAgICAgICAgICJkYXRlIjogZGF0ZX0KICAgICMgbm8gc3VpdGFibGUg -dGFncywgc28gdmVyc2lvbiBpcyAiMCt1bmtub3duIiwgYnV0IGZ1bGwgaGV4 -IGlzIHN0aWxsIHRoZXJlCiAgICBpZiB2ZXJib3NlOgogICAgICAgIHByaW50 -KCJubyBzdWl0YWJsZSB0YWdzLCB1c2luZyB1bmtub3duICsgZnVsbCByZXZp -c2lvbiBpZCIpCiAgICByZXR1cm4geyJ2ZXJzaW9uIjogIjArdW5rbm93biIs -CiAgICAgICAgICAgICJmdWxsLXJldmlzaW9uaWQiOiBrZXl3b3Jkc1siZnVs -bCJdLnN0cmlwKCksCiAgICAgICAgICAgICJkaXJ0eSI6IEZhbHNlLCAiZXJy -b3IiOiAibm8gc3VpdGFibGUgdGFncyIsICJkYXRlIjogTm9uZX0KCgpAcmVn -aXN0ZXJfdmNzX2hhbmRsZXIoImdpdCIsICJwaWVjZXNfZnJvbV92Y3MiKQpk -ZWYgZ2l0X3BpZWNlc19mcm9tX3ZjcygKICAgIHRhZ19wcmVmaXg6IHN0ciwK -ICAgIHJvb3Q6IHN0ciwKICAgIHZlcmJvc2U6IGJvb2wsCiAgICBydW5uZXI6 -IENhbGxhYmxlID0gcnVuX2NvbW1hbmQKKSAtPiBEaWN0W3N0ciwgQW55XToK -ICAgICIiIkdldCB2ZXJzaW9uIGZyb20gJ2dpdCBkZXNjcmliZScgaW4gdGhl -IHJvb3Qgb2YgdGhlIHNvdXJjZSB0cmVlLgoKICAgIFRoaXMgb25seSBnZXRz -IGNhbGxlZCBpZiB0aGUgZ2l0LWFyY2hpdmUgJ3N1YnN0JyBrZXl3b3JkcyB3 -ZXJlICpub3QqCiAgICBleHBhbmRlZCwgYW5kIF92ZXJzaW9uLnB5IGhhc24n -dCBhbHJlYWR5IGJlZW4gcmV3cml0dGVuIHdpdGggYSBzaG9ydAogICAgdmVy -c2lvbiBzdHJpbmcsIG1lYW5pbmcgd2UncmUgaW5zaWRlIGEgY2hlY2tlZCBv -dXQgc291cmNlIHRyZWUuCiAgICAiIiIKICAgIEdJVFMgPSBbImdpdCJdCiAg -ICBpZiBzeXMucGxhdGZvcm0gPT0gIndpbjMyIjoKICAgICAgICBHSVRTID0g -WyJnaXQuY21kIiwgImdpdC5leGUiXQoKICAgICMgR0lUX0RJUiBjYW4gaW50 -ZXJmZXJlIHdpdGggY29ycmVjdCBvcGVyYXRpb24gb2YgVmVyc2lvbmVlci4K -ICAgICMgSXQgbWF5IGJlIGludGVuZGVkIHRvIGJlIHBhc3NlZCB0byB0aGUg -VmVyc2lvbmVlci12ZXJzaW9uZWQgcHJvamVjdCwKICAgICMgYnV0IHRoYXQg -c2hvdWxkIG5vdCBjaGFuZ2Ugd2hlcmUgd2UgZ2V0IG91ciB2ZXJzaW9uIGZy -b20uCiAgICBlbnYgPSBvcy5lbnZpcm9uLmNvcHkoKQogICAgZW52LnBvcCgi -R0lUX0RJUiIsIE5vbmUpCiAgICBydW5uZXIgPSBmdW5jdG9vbHMucGFydGlh -bChydW5uZXIsIGVudj1lbnYpCgogICAgXywgcmMgPSBydW5uZXIoR0lUUywg -WyJyZXYtcGFyc2UiLCAiLS1naXQtZGlyIl0sIGN3ZD1yb290LAogICAgICAg -ICAgICAgICAgICAgaGlkZV9zdGRlcnI9bm90IHZlcmJvc2UpCiAgICBpZiBy -YyAhPSAwOgogICAgICAgIGlmIHZlcmJvc2U6CiAgICAgICAgICAgIHByaW50 -KCJEaXJlY3RvcnkgJXMgbm90IHVuZGVyIGdpdCBjb250cm9sIiAlIHJvb3Qp -CiAgICAgICAgcmFpc2UgTm90VGhpc01ldGhvZCgiJ2dpdCByZXYtcGFyc2Ug -LS1naXQtZGlyJyByZXR1cm5lZCBlcnJvciIpCgogICAgIyBpZiB0aGVyZSBp -cyBhIHRhZyBtYXRjaGluZyB0YWdfcHJlZml4LCB0aGlzIHlpZWxkcyBUQUct -TlVNLWdIRVhbLWRpcnR5XQogICAgIyBpZiB0aGVyZSBpc24ndCBvbmUsIHRo -aXMgeWllbGRzIEhFWFstZGlydHldIChubyBOVU0pCiAgICBkZXNjcmliZV9v -dXQsIHJjID0gcnVubmVyKEdJVFMsIFsKICAgICAgICAiZGVzY3JpYmUiLCAi -LS10YWdzIiwgIi0tZGlydHkiLCAiLS1hbHdheXMiLCAiLS1sb25nIiwKICAg -ICAgICAiLS1tYXRjaCIsIGYie3RhZ19wcmVmaXh9W1s6ZGlnaXQ6XV0qIgog -ICAgXSwgY3dkPXJvb3QpCiAgICAjIC0tbG9uZyB3YXMgYWRkZWQgaW4gZ2l0 -LTEuNS41CiAgICBpZiBkZXNjcmliZV9vdXQgaXMgTm9uZToKICAgICAgICBy -YWlzZSBOb3RUaGlzTWV0aG9kKCInZ2l0IGRlc2NyaWJlJyBmYWlsZWQiKQog -ICAgZGVzY3JpYmVfb3V0ID0gZGVzY3JpYmVfb3V0LnN0cmlwKCkKICAgIGZ1 -bGxfb3V0LCByYyA9IHJ1bm5lcihHSVRTLCBbInJldi1wYXJzZSIsICJIRUFE -Il0sIGN3ZD1yb290KQogICAgaWYgZnVsbF9vdXQgaXMgTm9uZToKICAgICAg -ICByYWlzZSBOb3RUaGlzTWV0aG9kKCInZ2l0IHJldi1wYXJzZScgZmFpbGVk -IikKICAgIGZ1bGxfb3V0ID0gZnVsbF9vdXQuc3RyaXAoKQoKICAgIHBpZWNl -czogRGljdFtzdHIsIEFueV0gPSB7fQogICAgcGllY2VzWyJsb25nIl0gPSBm -dWxsX291dAogICAgcGllY2VzWyJzaG9ydCJdID0gZnVsbF9vdXRbOjddICAj -IG1heWJlIGltcHJvdmVkIGxhdGVyCiAgICBwaWVjZXNbImVycm9yIl0gPSBO -b25lCgogICAgYnJhbmNoX25hbWUsIHJjID0gcnVubmVyKEdJVFMsIFsicmV2 -LXBhcnNlIiwgIi0tYWJicmV2LXJlZiIsICJIRUFEIl0sCiAgICAgICAgICAg -ICAgICAgICAgICAgICAgICAgY3dkPXJvb3QpCiAgICAjIC0tYWJicmV2LXJl -ZiB3YXMgYWRkZWQgaW4gZ2l0LTEuNi4zCiAgICBpZiByYyAhPSAwIG9yIGJy -YW5jaF9uYW1lIGlzIE5vbmU6CiAgICAgICAgcmFpc2UgTm90VGhpc01ldGhv -ZCgiJ2dpdCByZXYtcGFyc2UgLS1hYmJyZXYtcmVmJyByZXR1cm5lZCBlcnJv -ciIpCiAgICBicmFuY2hfbmFtZSA9IGJyYW5jaF9uYW1lLnN0cmlwKCkKCiAg -ICBpZiBicmFuY2hfbmFtZSA9PSAiSEVBRCI6CiAgICAgICAgIyBJZiB3ZSBh -cmVuJ3QgZXhhY3RseSBvbiBhIGJyYW5jaCwgcGljayBhIGJyYW5jaCB3aGlj -aCByZXByZXNlbnRzCiAgICAgICAgIyB0aGUgY3VycmVudCBjb21taXQuIElm -IGFsbCBlbHNlIGZhaWxzLCB3ZSBhcmUgb24gYSBicmFuY2hsZXNzCiAgICAg -ICAgIyBjb21taXQuCiAgICAgICAgYnJhbmNoZXMsIHJjID0gcnVubmVyKEdJ -VFMsIFsiYnJhbmNoIiwgIi0tY29udGFpbnMiXSwgY3dkPXJvb3QpCiAgICAg -ICAgIyAtLWNvbnRhaW5zIHdhcyBhZGRlZCBpbiBnaXQtMS41LjQKICAgICAg -ICBpZiByYyAhPSAwIG9yIGJyYW5jaGVzIGlzIE5vbmU6CiAgICAgICAgICAg -IHJhaXNlIE5vdFRoaXNNZXRob2QoIidnaXQgYnJhbmNoIC0tY29udGFpbnMn -IHJldHVybmVkIGVycm9yIikKICAgICAgICBicmFuY2hlcyA9IGJyYW5jaGVz -LnNwbGl0KCJcbiIpCgogICAgICAgICMgUmVtb3ZlIHRoZSBmaXJzdCBsaW5l -IGlmIHdlJ3JlIHJ1bm5pbmcgZGV0YWNoZWQKICAgICAgICBpZiAiKCIgaW4g -YnJhbmNoZXNbMF06CiAgICAgICAgICAgIGJyYW5jaGVzLnBvcCgwKQoKICAg -ICAgICAjIFN0cmlwIG9mZiB0aGUgbGVhZGluZyAiKiAiIGZyb20gdGhlIGxp -c3Qgb2YgYnJhbmNoZXMuCiAgICAgICAgYnJhbmNoZXMgPSBbYnJhbmNoWzI6 -XSBmb3IgYnJhbmNoIGluIGJyYW5jaGVzXQogICAgICAgIGlmICJtYXN0ZXIi -IGluIGJyYW5jaGVzOgogICAgICAgICAgICBicmFuY2hfbmFtZSA9ICJtYXN0 -ZXIiCiAgICAgICAgZWxpZiBub3QgYnJhbmNoZXM6CiAgICAgICAgICAgIGJy -YW5jaF9uYW1lID0gTm9uZQogICAgICAgIGVsc2U6CiAgICAgICAgICAgICMg -UGljayB0aGUgZmlyc3QgYnJhbmNoIHRoYXQgaXMgcmV0dXJuZWQuIEdvb2Qg -b3IgYmFkLgogICAgICAgICAgICBicmFuY2hfbmFtZSA9IGJyYW5jaGVzWzBd -CgogICAgcGllY2VzWyJicmFuY2giXSA9IGJyYW5jaF9uYW1lCgogICAgIyBw -YXJzZSBkZXNjcmliZV9vdXQuIEl0IHdpbGwgYmUgbGlrZSBUQUctTlVNLWdI -RVhbLWRpcnR5XSBvciBIRVhbLWRpcnR5XQogICAgIyBUQUcgbWlnaHQgaGF2 -ZSBoeXBoZW5zLgogICAgZ2l0X2Rlc2NyaWJlID0gZGVzY3JpYmVfb3V0Cgog -ICAgIyBsb29rIGZvciAtZGlydHkgc3VmZml4CiAgICBkaXJ0eSA9IGdpdF9k -ZXNjcmliZS5lbmRzd2l0aCgiLWRpcnR5IikKICAgIHBpZWNlc1siZGlydHki -XSA9IGRpcnR5CiAgICBpZiBkaXJ0eToKICAgICAgICBnaXRfZGVzY3JpYmUg -PSBnaXRfZGVzY3JpYmVbOmdpdF9kZXNjcmliZS5yaW5kZXgoIi1kaXJ0eSIp -XQoKICAgICMgbm93IHdlIGhhdmUgVEFHLU5VTS1nSEVYIG9yIEhFWAoKICAg -IGlmICItIiBpbiBnaXRfZGVzY3JpYmU6CiAgICAgICAgIyBUQUctTlVNLWdI -RVgKICAgICAgICBtbyA9IHJlLnNlYXJjaChyJ14oLispLShcZCspLWcoWzAt -OWEtZl0rKSQnLCBnaXRfZGVzY3JpYmUpCiAgICAgICAgaWYgbm90IG1vOgog -ICAgICAgICAgICAjIHVucGFyc2FibGUuIE1heWJlIGdpdC1kZXNjcmliZSBp -cyBtaXNiZWhhdmluZz8KICAgICAgICAgICAgcGllY2VzWyJlcnJvciJdID0g -KCJ1bmFibGUgdG8gcGFyc2UgZ2l0LWRlc2NyaWJlIG91dHB1dDogJyVzJyIK -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICUgZGVzY3JpYmVfb3V0 -KQogICAgICAgICAgICByZXR1cm4gcGllY2VzCgogICAgICAgICMgdGFnCiAg -ICAgICAgZnVsbF90YWcgPSBtby5ncm91cCgxKQogICAgICAgIGlmIG5vdCBm -dWxsX3RhZy5zdGFydHN3aXRoKHRhZ19wcmVmaXgpOgogICAgICAgICAgICBp -ZiB2ZXJib3NlOgogICAgICAgICAgICAgICAgZm10ID0gInRhZyAnJXMnIGRv -ZXNuJ3Qgc3RhcnQgd2l0aCBwcmVmaXggJyVzJyIKICAgICAgICAgICAgICAg -IHByaW50KGZtdCAlIChmdWxsX3RhZywgdGFnX3ByZWZpeCkpCiAgICAgICAg -ICAgIHBpZWNlc1siZXJyb3IiXSA9ICgidGFnICclcycgZG9lc24ndCBzdGFy -dCB3aXRoIHByZWZpeCAnJXMnIgogICAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgJSAoZnVsbF90YWcsIHRhZ19wcmVmaXgpKQogICAgICAgICAgICBy -ZXR1cm4gcGllY2VzCiAgICAgICAgcGllY2VzWyJjbG9zZXN0LXRhZyJdID0g -ZnVsbF90YWdbbGVuKHRhZ19wcmVmaXgpOl0KCiAgICAgICAgIyBkaXN0YW5j -ZTogbnVtYmVyIG9mIGNvbW1pdHMgc2luY2UgdGFnCiAgICAgICAgcGllY2Vz -WyJkaXN0YW5jZSJdID0gaW50KG1vLmdyb3VwKDIpKQoKICAgICAgICAjIGNv -bW1pdDogc2hvcnQgaGV4IHJldmlzaW9uIElECiAgICAgICAgcGllY2VzWyJz -aG9ydCJdID0gbW8uZ3JvdXAoMykKCiAgICBlbHNlOgogICAgICAgICMgSEVY -OiBubyB0YWdzCiAgICAgICAgcGllY2VzWyJjbG9zZXN0LXRhZyJdID0gTm9u -ZQogICAgICAgIG91dCwgcmMgPSBydW5uZXIoR0lUUywgWyJyZXYtbGlzdCIs -ICJIRUFEIiwgIi0tbGVmdC1yaWdodCJdLCBjd2Q9cm9vdCkKICAgICAgICBw -aWVjZXNbImRpc3RhbmNlIl0gPSBsZW4ob3V0LnNwbGl0KCkpICAjIHRvdGFs -IG51bWJlciBvZiBjb21taXRzCgogICAgIyBjb21taXQgZGF0ZTogc2VlIElT -Ty04NjAxIGNvbW1lbnQgaW4gZ2l0X3ZlcnNpb25zX2Zyb21fa2V5d29yZHMo -KQogICAgZGF0ZSA9IHJ1bm5lcihHSVRTLCBbInNob3ciLCAiLXMiLCAiLS1m -b3JtYXQ9JWNpIiwgIkhFQUQiXSwgY3dkPXJvb3QpWzBdLnN0cmlwKCkKICAg -ICMgVXNlIG9ubHkgdGhlIGxhc3QgbGluZS4gIFByZXZpb3VzIGxpbmVzIG1h -eSBjb250YWluIEdQRyBzaWduYXR1cmUKICAgICMgaW5mb3JtYXRpb24uCiAg -ICBkYXRlID0gZGF0ZS5zcGxpdGxpbmVzKClbLTFdCiAgICBwaWVjZXNbImRh -dGUiXSA9IGRhdGUuc3RyaXAoKS5yZXBsYWNlKCIgIiwgIlQiLCAxKS5yZXBs -YWNlKCIgIiwgIiIsIDEpCgogICAgcmV0dXJuIHBpZWNlcwoKCmRlZiBkb192 -Y3NfaW5zdGFsbCh2ZXJzaW9uZmlsZV9zb3VyY2U6IHN0ciwgaXB5OiBPcHRp -b25hbFtzdHJdKSAtPiBOb25lOgogICAgIiIiR2l0LXNwZWNpZmljIGluc3Rh -bGxhdGlvbiBsb2dpYyBmb3IgVmVyc2lvbmVlci4KCiAgICBGb3IgR2l0LCB0 -aGlzIG1lYW5zIGNyZWF0aW5nL2NoYW5naW5nIC5naXRhdHRyaWJ1dGVzIHRv -IG1hcmsgX3ZlcnNpb24ucHkKICAgIGZvciBleHBvcnQtc3Vic3Qga2V5d29y -ZCBzdWJzdGl0dXRpb24uCiAgICAiIiIKICAgIEdJVFMgPSBbImdpdCJdCiAg -ICBpZiBzeXMucGxhdGZvcm0gPT0gIndpbjMyIjoKICAgICAgICBHSVRTID0g -WyJnaXQuY21kIiwgImdpdC5leGUiXQogICAgZmlsZXMgPSBbdmVyc2lvbmZp -bGVfc291cmNlXQogICAgaWYgaXB5OgogICAgICAgIGZpbGVzLmFwcGVuZChp -cHkpCiAgICBpZiAiVkVSU0lPTkVFUl9QRVA1MTgiIG5vdCBpbiBnbG9iYWxz -KCk6CiAgICAgICAgdHJ5OgogICAgICAgICAgICBteV9wYXRoID0gX19maWxl -X18KICAgICAgICAgICAgaWYgbXlfcGF0aC5lbmRzd2l0aCgoIi5weWMiLCAi -LnB5byIpKToKICAgICAgICAgICAgICAgIG15X3BhdGggPSBvcy5wYXRoLnNw -bGl0ZXh0KG15X3BhdGgpWzBdICsgIi5weSIKICAgICAgICAgICAgdmVyc2lv -bmVlcl9maWxlID0gb3MucGF0aC5yZWxwYXRoKG15X3BhdGgpCiAgICAgICAg -ZXhjZXB0IE5hbWVFcnJvcjoKICAgICAgICAgICAgdmVyc2lvbmVlcl9maWxl -ID0gInZlcnNpb25lZXIucHkiCiAgICAgICAgZmlsZXMuYXBwZW5kKHZlcnNp -b25lZXJfZmlsZSkKICAgIHByZXNlbnQgPSBGYWxzZQogICAgdHJ5OgogICAg -ICAgIHdpdGggb3BlbigiLmdpdGF0dHJpYnV0ZXMiLCAiciIpIGFzIGZvYmo6 -CiAgICAgICAgICAgIGZvciBsaW5lIGluIGZvYmo6CiAgICAgICAgICAgICAg -ICBpZiBsaW5lLnN0cmlwKCkuc3RhcnRzd2l0aCh2ZXJzaW9uZmlsZV9zb3Vy -Y2UpOgogICAgICAgICAgICAgICAgICAgIGlmICJleHBvcnQtc3Vic3QiIGlu -IGxpbmUuc3RyaXAoKS5zcGxpdCgpWzE6XToKICAgICAgICAgICAgICAgICAg -ICAgICAgcHJlc2VudCA9IFRydWUKICAgICAgICAgICAgICAgICAgICAgICAg -YnJlYWsKICAgIGV4Y2VwdCBPU0Vycm9yOgogICAgICAgIHBhc3MKICAgIGlm -IG5vdCBwcmVzZW50OgogICAgICAgIHdpdGggb3BlbigiLmdpdGF0dHJpYnV0 -ZXMiLCAiYSsiKSBhcyBmb2JqOgogICAgICAgICAgICBmb2JqLndyaXRlKGYi -e3ZlcnNpb25maWxlX3NvdXJjZX0gZXhwb3J0LXN1YnN0XG4iKQogICAgICAg -IGZpbGVzLmFwcGVuZCgiLmdpdGF0dHJpYnV0ZXMiKQogICAgcnVuX2NvbW1h -bmQoR0lUUywgWyJhZGQiLCAiLS0iXSArIGZpbGVzKQoKCmRlZiB2ZXJzaW9u -c19mcm9tX3BhcmVudGRpcigKICAgIHBhcmVudGRpcl9wcmVmaXg6IHN0ciwK -ICAgIHJvb3Q6IHN0ciwKICAgIHZlcmJvc2U6IGJvb2wsCikgLT4gRGljdFtz -dHIsIEFueV06CiAgICAiIiJUcnkgdG8gZGV0ZXJtaW5lIHRoZSB2ZXJzaW9u -IGZyb20gdGhlIHBhcmVudCBkaXJlY3RvcnkgbmFtZS4KCiAgICBTb3VyY2Ug -dGFyYmFsbHMgY29udmVudGlvbmFsbHkgdW5wYWNrIGludG8gYSBkaXJlY3Rv -cnkgdGhhdCBpbmNsdWRlcyBib3RoCiAgICB0aGUgcHJvamVjdCBuYW1lIGFu -ZCBhIHZlcnNpb24gc3RyaW5nLiBXZSB3aWxsIGFsc28gc3VwcG9ydCBzZWFy -Y2hpbmcgdXAKICAgIHR3byBkaXJlY3RvcnkgbGV2ZWxzIGZvciBhbiBhcHBy -b3ByaWF0ZWx5IG5hbWVkIHBhcmVudCBkaXJlY3RvcnkKICAgICIiIgogICAg -cm9vdGRpcnMgPSBbXQoKICAgIGZvciBfIGluIHJhbmdlKDMpOgogICAgICAg -IGRpcm5hbWUgPSBvcy5wYXRoLmJhc2VuYW1lKHJvb3QpCiAgICAgICAgaWYg -ZGlybmFtZS5zdGFydHN3aXRoKHBhcmVudGRpcl9wcmVmaXgpOgogICAgICAg -ICAgICByZXR1cm4geyJ2ZXJzaW9uIjogZGlybmFtZVtsZW4ocGFyZW50ZGly -X3ByZWZpeCk6XSwKICAgICAgICAgICAgICAgICAgICAiZnVsbC1yZXZpc2lv -bmlkIjogTm9uZSwKICAgICAgICAgICAgICAgICAgICAiZGlydHkiOiBGYWxz -ZSwgImVycm9yIjogTm9uZSwgImRhdGUiOiBOb25lfQogICAgICAgIHJvb3Rk -aXJzLmFwcGVuZChyb290KQogICAgICAgIHJvb3QgPSBvcy5wYXRoLmRpcm5h -bWUocm9vdCkgICMgdXAgYSBsZXZlbAoKICAgIGlmIHZlcmJvc2U6CiAgICAg -ICAgcHJpbnQoIlRyaWVkIGRpcmVjdG9yaWVzICVzIGJ1dCBub25lIHN0YXJ0 -ZWQgd2l0aCBwcmVmaXggJXMiICUKICAgICAgICAgICAgICAoc3RyKHJvb3Rk -aXJzKSwgcGFyZW50ZGlyX3ByZWZpeCkpCiAgICByYWlzZSBOb3RUaGlzTWV0 -aG9kKCJyb290ZGlyIGRvZXNuJ3Qgc3RhcnQgd2l0aCBwYXJlbnRkaXJfcHJl -Zml4IikKCgpTSE9SVF9WRVJTSU9OX1BZID0gIiIiCiMgVGhpcyBmaWxlIHdh -cyBnZW5lcmF0ZWQgYnkgJ3ZlcnNpb25lZXIucHknICgwLjI5KSBmcm9tCiMg -cmV2aXNpb24tY29udHJvbCBzeXN0ZW0gZGF0YSwgb3IgZnJvbSB0aGUgcGFy -ZW50IGRpcmVjdG9yeSBuYW1lIG9mIGFuCiMgdW5wYWNrZWQgc291cmNlIGFy -Y2hpdmUuIERpc3RyaWJ1dGlvbiB0YXJiYWxscyBjb250YWluIGEgcHJlLWdl -bmVyYXRlZCBjb3B5CiMgb2YgdGhpcyBmaWxlLgoKaW1wb3J0IGpzb24KCnZl -cnNpb25fanNvbiA9ICcnJwolcwonJycgICMgRU5EIFZFUlNJT05fSlNPTgoK -CmRlZiBnZXRfdmVyc2lvbnMoKToKICAgIHJldHVybiBqc29uLmxvYWRzKHZl -cnNpb25fanNvbikKIiIiCgoKZGVmIHZlcnNpb25zX2Zyb21fZmlsZShmaWxl -bmFtZTogc3RyKSAtPiBEaWN0W3N0ciwgQW55XToKICAgICIiIlRyeSB0byBk -ZXRlcm1pbmUgdGhlIHZlcnNpb24gZnJvbSBfdmVyc2lvbi5weSBpZiBwcmVz -ZW50LiIiIgogICAgdHJ5OgogICAgICAgIHdpdGggb3BlbihmaWxlbmFtZSkg -YXMgZjoKICAgICAgICAgICAgY29udGVudHMgPSBmLnJlYWQoKQogICAgZXhj -ZXB0IE9TRXJyb3I6CiAgICAgICAgcmFpc2UgTm90VGhpc01ldGhvZCgidW5h -YmxlIHRvIHJlYWQgX3ZlcnNpb24ucHkiKQogICAgbW8gPSByZS5zZWFyY2go -ciJ2ZXJzaW9uX2pzb24gPSAnJydcbiguKiknJycgICMgRU5EIFZFUlNJT05f -SlNPTiIsCiAgICAgICAgICAgICAgICAgICBjb250ZW50cywgcmUuTSB8IHJl -LlMpCiAgICBpZiBub3QgbW86CiAgICAgICAgbW8gPSByZS5zZWFyY2gociJ2 -ZXJzaW9uX2pzb24gPSAnJydcclxuKC4qKScnJyAgIyBFTkQgVkVSU0lPTl9K -U09OIiwKICAgICAgICAgICAgICAgICAgICAgICBjb250ZW50cywgcmUuTSB8 -IHJlLlMpCiAgICBpZiBub3QgbW86CiAgICAgICAgcmFpc2UgTm90VGhpc01l -dGhvZCgibm8gdmVyc2lvbl9qc29uIGluIF92ZXJzaW9uLnB5IikKICAgIHJl -dHVybiBqc29uLmxvYWRzKG1vLmdyb3VwKDEpKQoKCmRlZiB3cml0ZV90b192 -ZXJzaW9uX2ZpbGUoZmlsZW5hbWU6IHN0ciwgdmVyc2lvbnM6IERpY3Rbc3Ry -LCBBbnldKSAtPiBOb25lOgogICAgIiIiV3JpdGUgdGhlIGdpdmVuIHZlcnNp -b24gbnVtYmVyIHRvIHRoZSBnaXZlbiBfdmVyc2lvbi5weSBmaWxlLiIiIgog -ICAgY29udGVudHMgPSBqc29uLmR1bXBzKHZlcnNpb25zLCBzb3J0X2tleXM9 -VHJ1ZSwKICAgICAgICAgICAgICAgICAgICAgICAgICBpbmRlbnQ9MSwgc2Vw -YXJhdG9ycz0oIiwiLCAiOiAiKSkKICAgIHdpdGggb3BlbihmaWxlbmFtZSwg -InciKSBhcyBmOgogICAgICAgIGYud3JpdGUoU0hPUlRfVkVSU0lPTl9QWSAl -IGNvbnRlbnRzKQoKICAgIHByaW50KCJzZXQgJXMgdG8gJyVzJyIgJSAoZmls -ZW5hbWUsIHZlcnNpb25zWyJ2ZXJzaW9uIl0pKQoKCmRlZiBwbHVzX29yX2Rv -dChwaWVjZXM6IERpY3Rbc3RyLCBBbnldKSAtPiBzdHI6CiAgICAiIiJSZXR1 -cm4gYSArIGlmIHdlIGRvbid0IGFscmVhZHkgaGF2ZSBvbmUsIGVsc2UgcmV0 -dXJuIGEgLiIiIgogICAgaWYgIisiIGluIHBpZWNlcy5nZXQoImNsb3Nlc3Qt -dGFnIiwgIiIpOgogICAgICAgIHJldHVybiAiLiIKICAgIHJldHVybiAiKyIK -CgpkZWYgcmVuZGVyX3BlcDQ0MChwaWVjZXM6IERpY3Rbc3RyLCBBbnldKSAt -PiBzdHI6CiAgICAiIiJCdWlsZCB1cCB2ZXJzaW9uIHN0cmluZywgd2l0aCBw -b3N0LXJlbGVhc2UgImxvY2FsIHZlcnNpb24gaWRlbnRpZmllciIuCgogICAg -T3VyIGdvYWw6IFRBR1srRElTVEFOQ0UuZ0hFWFsuZGlydHldXSAuIE5vdGUg -dGhhdCBpZiB5b3UKICAgIGdldCBhIHRhZ2dlZCBidWlsZCBhbmQgdGhlbiBk -aXJ0eSBpdCwgeW91J2xsIGdldCBUQUcrMC5nSEVYLmRpcnR5CgogICAgRXhj -ZXB0aW9uczoKICAgIDE6IG5vIHRhZ3MuIGdpdF9kZXNjcmliZSB3YXMganVz -dCBIRVguIDArdW50YWdnZWQuRElTVEFOQ0UuZ0hFWFsuZGlydHldCiAgICAi -IiIKICAgIGlmIHBpZWNlc1siY2xvc2VzdC10YWciXToKICAgICAgICByZW5k -ZXJlZCA9IHBpZWNlc1siY2xvc2VzdC10YWciXQogICAgICAgIGlmIHBpZWNl -c1siZGlzdGFuY2UiXSBvciBwaWVjZXNbImRpcnR5Il06CiAgICAgICAgICAg -IHJlbmRlcmVkICs9IHBsdXNfb3JfZG90KHBpZWNlcykKICAgICAgICAgICAg -cmVuZGVyZWQgKz0gIiVkLmclcyIgJSAocGllY2VzWyJkaXN0YW5jZSJdLCBw -aWVjZXNbInNob3J0Il0pCiAgICAgICAgICAgIGlmIHBpZWNlc1siZGlydHki -XToKICAgICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGlydHkiCiAgICBl -bHNlOgogICAgICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVyZWQg -PSAiMCt1bnRhZ2dlZC4lZC5nJXMiICUgKHBpZWNlc1siZGlzdGFuY2UiXSwK -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgcGll -Y2VzWyJzaG9ydCJdKQogICAgICAgIGlmIHBpZWNlc1siZGlydHkiXToKICAg -ICAgICAgICAgcmVuZGVyZWQgKz0gIi5kaXJ0eSIKICAgIHJldHVybiByZW5k -ZXJlZAoKCmRlZiByZW5kZXJfcGVwNDQwX2JyYW5jaChwaWVjZXM6IERpY3Rb -c3RyLCBBbnldKSAtPiBzdHI6CiAgICAiIiJUQUdbWy5kZXYwXStESVNUQU5D -RS5nSEVYWy5kaXJ0eV1dIC4KCiAgICBUaGUgIi5kZXYwIiBtZWFucyBub3Qg -bWFzdGVyIGJyYW5jaC4gTm90ZSB0aGF0IC5kZXYwIHNvcnRzIGJhY2t3YXJk -cwogICAgKGEgZmVhdHVyZSBicmFuY2ggd2lsbCBhcHBlYXIgIm9sZGVyIiB0 -aGFuIHRoZSBtYXN0ZXIgYnJhbmNoKS4KCiAgICBFeGNlcHRpb25zOgogICAg -MTogbm8gdGFncy4gMFsuZGV2MF0rdW50YWdnZWQuRElTVEFOQ0UuZ0hFWFsu -ZGlydHldCiAgICAiIiIKICAgIGlmIHBpZWNlc1siY2xvc2VzdC10YWciXToK -ICAgICAgICByZW5kZXJlZCA9IHBpZWNlc1siY2xvc2VzdC10YWciXQogICAg -ICAgIGlmIHBpZWNlc1siZGlzdGFuY2UiXSBvciBwaWVjZXNbImRpcnR5Il06 -CiAgICAgICAgICAgIGlmIHBpZWNlc1siYnJhbmNoIl0gIT0gIm1hc3RlciI6 -CiAgICAgICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAg -ICAgIHJlbmRlcmVkICs9IHBsdXNfb3JfZG90KHBpZWNlcykKICAgICAgICAg -ICAgcmVuZGVyZWQgKz0gIiVkLmclcyIgJSAocGllY2VzWyJkaXN0YW5jZSJd -LCBwaWVjZXNbInNob3J0Il0pCiAgICAgICAgICAgIGlmIHBpZWNlc1siZGly -dHkiXToKICAgICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGlydHkiCiAg -ICBlbHNlOgogICAgICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVy -ZWQgPSAiMCIKICAgICAgICBpZiBwaWVjZXNbImJyYW5jaCJdICE9ICJtYXN0 -ZXIiOgogICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAg -cmVuZGVyZWQgKz0gIit1bnRhZ2dlZC4lZC5nJXMiICUgKHBpZWNlc1siZGlz -dGFuY2UiXSwKICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAg -ICAgICAgcGllY2VzWyJzaG9ydCJdKQogICAgICAgIGlmIHBpZWNlc1siZGly -dHkiXToKICAgICAgICAgICAgcmVuZGVyZWQgKz0gIi5kaXJ0eSIKICAgIHJl -dHVybiByZW5kZXJlZAoKCmRlZiBwZXA0NDBfc3BsaXRfcG9zdCh2ZXI6IHN0 -cikgLT4gVHVwbGVbc3RyLCBPcHRpb25hbFtpbnRdXToKICAgICIiIlNwbGl0 -IHBlcDQ0MCB2ZXJzaW9uIHN0cmluZyBhdCB0aGUgcG9zdC1yZWxlYXNlIHNl -Z21lbnQuCgogICAgUmV0dXJucyB0aGUgcmVsZWFzZSBzZWdtZW50cyBiZWZv -cmUgdGhlIHBvc3QtcmVsZWFzZSBhbmQgdGhlCiAgICBwb3N0LXJlbGVhc2Ug -dmVyc2lvbiBudW1iZXIgKG9yIC0xIGlmIG5vIHBvc3QtcmVsZWFzZSBzZWdt -ZW50IGlzIHByZXNlbnQpLgogICAgIiIiCiAgICB2YyA9IHN0ci5zcGxpdCh2 -ZXIsICIucG9zdCIpCiAgICByZXR1cm4gdmNbMF0sIGludCh2Y1sxXSBvciAw -KSBpZiBsZW4odmMpID09IDIgZWxzZSBOb25lCgoKZGVmIHJlbmRlcl9wZXA0 -NDBfcHJlKHBpZWNlczogRGljdFtzdHIsIEFueV0pIC0+IHN0cjoKICAgICIi -IlRBR1sucG9zdE4uZGV2RElTVEFOQ0VdIC0tIE5vIC1kaXJ0eS4KCiAgICBF -eGNlcHRpb25zOgogICAgMTogbm8gdGFncy4gMC5wb3N0MC5kZXZESVNUQU5D -RQogICAgIiIiCiAgICBpZiBwaWVjZXNbImNsb3Nlc3QtdGFnIl06CiAgICAg -ICAgaWYgcGllY2VzWyJkaXN0YW5jZSJdOgogICAgICAgICAgICAjIHVwZGF0 -ZSB0aGUgcG9zdCByZWxlYXNlIHNlZ21lbnQKICAgICAgICAgICAgdGFnX3Zl -cnNpb24sIHBvc3RfdmVyc2lvbiA9IHBlcDQ0MF9zcGxpdF9wb3N0KHBpZWNl -c1siY2xvc2VzdC10YWciXSkKICAgICAgICAgICAgcmVuZGVyZWQgPSB0YWdf -dmVyc2lvbgogICAgICAgICAgICBpZiBwb3N0X3ZlcnNpb24gaXMgbm90IE5v -bmU6CiAgICAgICAgICAgICAgICByZW5kZXJlZCArPSAiLnBvc3QlZC5kZXYl -ZCIgJSAocG9zdF92ZXJzaW9uICsgMSwgcGllY2VzWyJkaXN0YW5jZSJdKQog -ICAgICAgICAgICBlbHNlOgogICAgICAgICAgICAgICAgcmVuZGVyZWQgKz0g -Ii5wb3N0MC5kZXYlZCIgJSAocGllY2VzWyJkaXN0YW5jZSJdKQogICAgICAg -IGVsc2U6CiAgICAgICAgICAgICMgbm8gY29tbWl0cywgdXNlIHRoZSB0YWcg -YXMgdGhlIHZlcnNpb24KICAgICAgICAgICAgcmVuZGVyZWQgPSBwaWVjZXNb -ImNsb3Nlc3QtdGFnIl0KICAgIGVsc2U6CiAgICAgICAgIyBleGNlcHRpb24g -IzEKICAgICAgICByZW5kZXJlZCA9ICIwLnBvc3QwLmRldiVkIiAlIHBpZWNl -c1siZGlzdGFuY2UiXQogICAgcmV0dXJuIHJlbmRlcmVkCgoKZGVmIHJlbmRl -cl9wZXA0NDBfcG9zdChwaWVjZXM6IERpY3Rbc3RyLCBBbnldKSAtPiBzdHI6 -CiAgICAiIiJUQUdbLnBvc3RESVNUQU5DRVsuZGV2MF0rZ0hFWF0gLgoKICAg -IFRoZSAiLmRldjAiIG1lYW5zIGRpcnR5LiBOb3RlIHRoYXQgLmRldjAgc29y -dHMgYmFja3dhcmRzCiAgICAoYSBkaXJ0eSB0cmVlIHdpbGwgYXBwZWFyICJv -bGRlciIgdGhhbiB0aGUgY29ycmVzcG9uZGluZyBjbGVhbiBvbmUpLAogICAg -YnV0IHlvdSBzaG91bGRuJ3QgYmUgcmVsZWFzaW5nIHNvZnR3YXJlIHdpdGgg -LWRpcnR5IGFueXdheXMuCgogICAgRXhjZXB0aW9uczoKICAgIDE6IG5vIHRh -Z3MuIDAucG9zdERJU1RBTkNFWy5kZXYwXQogICAgIiIiCiAgICBpZiBwaWVj -ZXNbImNsb3Nlc3QtdGFnIl06CiAgICAgICAgcmVuZGVyZWQgPSBwaWVjZXNb -ImNsb3Nlc3QtdGFnIl0KICAgICAgICBpZiBwaWVjZXNbImRpc3RhbmNlIl0g -b3IgcGllY2VzWyJkaXJ0eSJdOgogICAgICAgICAgICByZW5kZXJlZCArPSAi -LnBvc3QlZCIgJSBwaWVjZXNbImRpc3RhbmNlIl0KICAgICAgICAgICAgaWYg -cGllY2VzWyJkaXJ0eSJdOgogICAgICAgICAgICAgICAgcmVuZGVyZWQgKz0g -Ii5kZXYwIgogICAgICAgICAgICByZW5kZXJlZCArPSBwbHVzX29yX2RvdChw -aWVjZXMpCiAgICAgICAgICAgIHJlbmRlcmVkICs9ICJnJXMiICUgcGllY2Vz -WyJzaG9ydCJdCiAgICBlbHNlOgogICAgICAgICMgZXhjZXB0aW9uICMxCiAg -ICAgICAgcmVuZGVyZWQgPSAiMC5wb3N0JWQiICUgcGllY2VzWyJkaXN0YW5j -ZSJdCiAgICAgICAgaWYgcGllY2VzWyJkaXJ0eSJdOgogICAgICAgICAgICBy -ZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAgcmVuZGVyZWQgKz0gIitnJXMi -ICUgcGllY2VzWyJzaG9ydCJdCiAgICByZXR1cm4gcmVuZGVyZWQKCgpkZWYg -cmVuZGVyX3BlcDQ0MF9wb3N0X2JyYW5jaChwaWVjZXM6IERpY3Rbc3RyLCBB -bnldKSAtPiBzdHI6CiAgICAiIiJUQUdbLnBvc3RESVNUQU5DRVsuZGV2MF0r -Z0hFWFsuZGlydHldXSAuCgogICAgVGhlICIuZGV2MCIgbWVhbnMgbm90IG1h -c3RlciBicmFuY2guCgogICAgRXhjZXB0aW9uczoKICAgIDE6IG5vIHRhZ3Mu -IDAucG9zdERJU1RBTkNFWy5kZXYwXStnSEVYWy5kaXJ0eV0KICAgICIiIgog -ICAgaWYgcGllY2VzWyJjbG9zZXN0LXRhZyJdOgogICAgICAgIHJlbmRlcmVk -ID0gcGllY2VzWyJjbG9zZXN0LXRhZyJdCiAgICAgICAgaWYgcGllY2VzWyJk -aXN0YW5jZSJdIG9yIHBpZWNlc1siZGlydHkiXToKICAgICAgICAgICAgcmVu -ZGVyZWQgKz0gIi5wb3N0JWQiICUgcGllY2VzWyJkaXN0YW5jZSJdCiAgICAg -ICAgICAgIGlmIHBpZWNlc1siYnJhbmNoIl0gIT0gIm1hc3RlciI6CiAgICAg -ICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAgICAgIHJl -bmRlcmVkICs9IHBsdXNfb3JfZG90KHBpZWNlcykKICAgICAgICAgICAgcmVu -ZGVyZWQgKz0gImclcyIgJSBwaWVjZXNbInNob3J0Il0KICAgICAgICAgICAg -aWYgcGllY2VzWyJkaXJ0eSJdOgogICAgICAgICAgICAgICAgcmVuZGVyZWQg -Kz0gIi5kaXJ0eSIKICAgIGVsc2U6CiAgICAgICAgIyBleGNlcHRpb24gIzEK -ICAgICAgICByZW5kZXJlZCA9ICIwLnBvc3QlZCIgJSBwaWVjZXNbImRpc3Rh -bmNlIl0KICAgICAgICBpZiBwaWVjZXNbImJyYW5jaCJdICE9ICJtYXN0ZXIi -OgogICAgICAgICAgICByZW5kZXJlZCArPSAiLmRldjAiCiAgICAgICAgcmVu -ZGVyZWQgKz0gIitnJXMiICUgcGllY2VzWyJzaG9ydCJdCiAgICAgICAgaWYg -cGllY2VzWyJkaXJ0eSJdOgogICAgICAgICAgICByZW5kZXJlZCArPSAiLmRp -cnR5IgogICAgcmV0dXJuIHJlbmRlcmVkCgoKZGVmIHJlbmRlcl9wZXA0NDBf -b2xkKHBpZWNlczogRGljdFtzdHIsIEFueV0pIC0+IHN0cjoKICAgICIiIlRB -R1sucG9zdERJU1RBTkNFWy5kZXYwXV0gLgoKICAgIFRoZSAiLmRldjAiIG1l -YW5zIGRpcnR5LgoKICAgIEV4Y2VwdGlvbnM6CiAgICAxOiBubyB0YWdzLiAw -LnBvc3RESVNUQU5DRVsuZGV2MF0KICAgICIiIgogICAgaWYgcGllY2VzWyJj -bG9zZXN0LXRhZyJdOgogICAgICAgIHJlbmRlcmVkID0gcGllY2VzWyJjbG9z -ZXN0LXRhZyJdCiAgICAgICAgaWYgcGllY2VzWyJkaXN0YW5jZSJdIG9yIHBp -ZWNlc1siZGlydHkiXToKICAgICAgICAgICAgcmVuZGVyZWQgKz0gIi5wb3N0 -JWQiICUgcGllY2VzWyJkaXN0YW5jZSJdCiAgICAgICAgICAgIGlmIHBpZWNl -c1siZGlydHkiXToKICAgICAgICAgICAgICAgIHJlbmRlcmVkICs9ICIuZGV2 -MCIKICAgIGVsc2U6CiAgICAgICAgIyBleGNlcHRpb24gIzEKICAgICAgICBy -ZW5kZXJlZCA9ICIwLnBvc3QlZCIgJSBwaWVjZXNbImRpc3RhbmNlIl0KICAg -ICAgICBpZiBwaWVjZXNbImRpcnR5Il06CiAgICAgICAgICAgIHJlbmRlcmVk -ICs9ICIuZGV2MCIKICAgIHJldHVybiByZW5kZXJlZAoKCmRlZiByZW5kZXJf -Z2l0X2Rlc2NyaWJlKHBpZWNlczogRGljdFtzdHIsIEFueV0pIC0+IHN0cjoK -ICAgICIiIlRBR1stRElTVEFOQ0UtZ0hFWF1bLWRpcnR5XS4KCiAgICBMaWtl -ICdnaXQgZGVzY3JpYmUgLS10YWdzIC0tZGlydHkgLS1hbHdheXMnLgoKICAg -IEV4Y2VwdGlvbnM6CiAgICAxOiBubyB0YWdzLiBIRVhbLWRpcnR5XSAgKG5v -dGU6IG5vICdnJyBwcmVmaXgpCiAgICAiIiIKICAgIGlmIHBpZWNlc1siY2xv -c2VzdC10YWciXToKICAgICAgICByZW5kZXJlZCA9IHBpZWNlc1siY2xvc2Vz -dC10YWciXQogICAgICAgIGlmIHBpZWNlc1siZGlzdGFuY2UiXToKICAgICAg -ICAgICAgcmVuZGVyZWQgKz0gIi0lZC1nJXMiICUgKHBpZWNlc1siZGlzdGFu -Y2UiXSwgcGllY2VzWyJzaG9ydCJdKQogICAgZWxzZToKICAgICAgICAjIGV4 -Y2VwdGlvbiAjMQogICAgICAgIHJlbmRlcmVkID0gcGllY2VzWyJzaG9ydCJd -CiAgICBpZiBwaWVjZXNbImRpcnR5Il06CiAgICAgICAgcmVuZGVyZWQgKz0g -Ii1kaXJ0eSIKICAgIHJldHVybiByZW5kZXJlZAoKCmRlZiByZW5kZXJfZ2l0 -X2Rlc2NyaWJlX2xvbmcocGllY2VzOiBEaWN0W3N0ciwgQW55XSkgLT4gc3Ry -OgogICAgIiIiVEFHLURJU1RBTkNFLWdIRVhbLWRpcnR5XS4KCiAgICBMaWtl -ICdnaXQgZGVzY3JpYmUgLS10YWdzIC0tZGlydHkgLS1hbHdheXMgLWxvbmcn -LgogICAgVGhlIGRpc3RhbmNlL2hhc2ggaXMgdW5jb25kaXRpb25hbC4KCiAg -ICBFeGNlcHRpb25zOgogICAgMTogbm8gdGFncy4gSEVYWy1kaXJ0eV0gIChu -b3RlOiBubyAnZycgcHJlZml4KQogICAgIiIiCiAgICBpZiBwaWVjZXNbImNs -b3Nlc3QtdGFnIl06CiAgICAgICAgcmVuZGVyZWQgPSBwaWVjZXNbImNsb3Nl -c3QtdGFnIl0KICAgICAgICByZW5kZXJlZCArPSAiLSVkLWclcyIgJSAocGll -Y2VzWyJkaXN0YW5jZSJdLCBwaWVjZXNbInNob3J0Il0pCiAgICBlbHNlOgog -ICAgICAgICMgZXhjZXB0aW9uICMxCiAgICAgICAgcmVuZGVyZWQgPSBwaWVj -ZXNbInNob3J0Il0KICAgIGlmIHBpZWNlc1siZGlydHkiXToKICAgICAgICBy -ZW5kZXJlZCArPSAiLWRpcnR5IgogICAgcmV0dXJuIHJlbmRlcmVkCgoKZGVm -IHJlbmRlcihwaWVjZXM6IERpY3Rbc3RyLCBBbnldLCBzdHlsZTogc3RyKSAt -PiBEaWN0W3N0ciwgQW55XToKICAgICIiIlJlbmRlciB0aGUgZ2l2ZW4gdmVy -c2lvbiBwaWVjZXMgaW50byB0aGUgcmVxdWVzdGVkIHN0eWxlLiIiIgogICAg -aWYgcGllY2VzWyJlcnJvciJdOgogICAgICAgIHJldHVybiB7InZlcnNpb24i -OiAidW5rbm93biIsCiAgICAgICAgICAgICAgICAiZnVsbC1yZXZpc2lvbmlk -IjogcGllY2VzLmdldCgibG9uZyIpLAogICAgICAgICAgICAgICAgImRpcnR5 -IjogTm9uZSwKICAgICAgICAgICAgICAgICJlcnJvciI6IHBpZWNlc1siZXJy -b3IiXSwKICAgICAgICAgICAgICAgICJkYXRlIjogTm9uZX0KCiAgICBpZiBu -b3Qgc3R5bGUgb3Igc3R5bGUgPT0gImRlZmF1bHQiOgogICAgICAgIHN0eWxl -ID0gInBlcDQ0MCIgICMgdGhlIGRlZmF1bHQKCiAgICBpZiBzdHlsZSA9PSAi -cGVwNDQwIjoKICAgICAgICByZW5kZXJlZCA9IHJlbmRlcl9wZXA0NDAocGll -Y2VzKQogICAgZWxpZiBzdHlsZSA9PSAicGVwNDQwLWJyYW5jaCI6CiAgICAg -ICAgcmVuZGVyZWQgPSByZW5kZXJfcGVwNDQwX2JyYW5jaChwaWVjZXMpCiAg -ICBlbGlmIHN0eWxlID09ICJwZXA0NDAtcHJlIjoKICAgICAgICByZW5kZXJl -ZCA9IHJlbmRlcl9wZXA0NDBfcHJlKHBpZWNlcykKICAgIGVsaWYgc3R5bGUg -PT0gInBlcDQ0MC1wb3N0IjoKICAgICAgICByZW5kZXJlZCA9IHJlbmRlcl9w -ZXA0NDBfcG9zdChwaWVjZXMpCiAgICBlbGlmIHN0eWxlID09ICJwZXA0NDAt -cG9zdC1icmFuY2giOgogICAgICAgIHJlbmRlcmVkID0gcmVuZGVyX3BlcDQ0 -MF9wb3N0X2JyYW5jaChwaWVjZXMpCiAgICBlbGlmIHN0eWxlID09ICJwZXA0 -NDAtb2xkIjoKICAgICAgICByZW5kZXJlZCA9IHJlbmRlcl9wZXA0NDBfb2xk -KHBpZWNlcykKICAgIGVsaWYgc3R5bGUgPT0gImdpdC1kZXNjcmliZSI6CiAg -ICAgICAgcmVuZGVyZWQgPSByZW5kZXJfZ2l0X2Rlc2NyaWJlKHBpZWNlcykK -ICAgIGVsaWYgc3R5bGUgPT0gImdpdC1kZXNjcmliZS1sb25nIjoKICAgICAg -ICByZW5kZXJlZCA9IHJlbmRlcl9naXRfZGVzY3JpYmVfbG9uZyhwaWVjZXMp -CiAgICBlbHNlOgogICAgICAgIHJhaXNlIFZhbHVlRXJyb3IoInVua25vd24g -c3R5bGUgJyVzJyIgJSBzdHlsZSkKCiAgICByZXR1cm4geyJ2ZXJzaW9uIjog -cmVuZGVyZWQsICJmdWxsLXJldmlzaW9uaWQiOiBwaWVjZXNbImxvbmciXSwK -ICAgICAgICAgICAgImRpcnR5IjogcGllY2VzWyJkaXJ0eSJdLCAiZXJyb3Ii -OiBOb25lLAogICAgICAgICAgICAiZGF0ZSI6IHBpZWNlcy5nZXQoImRhdGUi -KX0KCgpjbGFzcyBWZXJzaW9uZWVyQmFkUm9vdEVycm9yKEV4Y2VwdGlvbik6 -CiAgICAiIiJUaGUgcHJvamVjdCByb290IGRpcmVjdG9yeSBpcyB1bmtub3du -IG9yIG1pc3Npbmcga2V5IGZpbGVzLiIiIgoKCmRlZiBnZXRfdmVyc2lvbnMo -dmVyYm9zZTogYm9vbCA9IEZhbHNlKSAtPiBEaWN0W3N0ciwgQW55XToKICAg -ICIiIkdldCB0aGUgcHJvamVjdCB2ZXJzaW9uIGZyb20gd2hhdGV2ZXIgc291 -cmNlIGlzIGF2YWlsYWJsZS4KCiAgICBSZXR1cm5zIGRpY3Qgd2l0aCB0d28g -a2V5czogJ3ZlcnNpb24nIGFuZCAnZnVsbCcuCiAgICAiIiIKICAgIGlmICJ2 -ZXJzaW9uZWVyIiBpbiBzeXMubW9kdWxlczoKICAgICAgICAjIHNlZSB0aGUg -ZGlzY3Vzc2lvbiBpbiBjbWRjbGFzcy5weTpnZXRfY21kY2xhc3MoKQogICAg -ICAgIGRlbCBzeXMubW9kdWxlc1sidmVyc2lvbmVlciJdCgogICAgcm9vdCA9 -IGdldF9yb290KCkKICAgIGNmZyA9IGdldF9jb25maWdfZnJvbV9yb290KHJv -b3QpCgogICAgYXNzZXJ0IGNmZy5WQ1MgaXMgbm90IE5vbmUsICJwbGVhc2Ug -c2V0IFt2ZXJzaW9uZWVyXVZDUz0gaW4gc2V0dXAuY2ZnIgogICAgaGFuZGxl -cnMgPSBIQU5ETEVSUy5nZXQoY2ZnLlZDUykKICAgIGFzc2VydCBoYW5kbGVy -cywgInVucmVjb2duaXplZCBWQ1MgJyVzJyIgJSBjZmcuVkNTCiAgICB2ZXJi -b3NlID0gdmVyYm9zZSBvciBib29sKGNmZy52ZXJib3NlKSAgIyBgYm9vbCgp -YCB1c2VkIHRvIGF2b2lkIGBOb25lYAogICAgYXNzZXJ0IGNmZy52ZXJzaW9u -ZmlsZV9zb3VyY2UgaXMgbm90IE5vbmUsIFwKICAgICAgICAicGxlYXNlIHNl -dCB2ZXJzaW9uZWVyLnZlcnNpb25maWxlX3NvdXJjZSIKICAgIGFzc2VydCBj -ZmcudGFnX3ByZWZpeCBpcyBub3QgTm9uZSwgInBsZWFzZSBzZXQgdmVyc2lv -bmVlci50YWdfcHJlZml4IgoKICAgIHZlcnNpb25maWxlX2FicyA9IG9zLnBh -dGguam9pbihyb290LCBjZmcudmVyc2lvbmZpbGVfc291cmNlKQoKICAgICMg -ZXh0cmFjdCB2ZXJzaW9uIGZyb20gZmlyc3Qgb2Y6IF92ZXJzaW9uLnB5LCBW -Q1MgY29tbWFuZCAoZS5nLiAnZ2l0CiAgICAjIGRlc2NyaWJlJyksIHBhcmVu -dGRpci4gVGhpcyBpcyBtZWFudCB0byB3b3JrIGZvciBkZXZlbG9wZXJzIHVz -aW5nIGEKICAgICMgc291cmNlIGNoZWNrb3V0LCBmb3IgdXNlcnMgb2YgYSB0 -YXJiYWxsIGNyZWF0ZWQgYnkgJ3NldHVwLnB5IHNkaXN0JywKICAgICMgYW5k -IGZvciB1c2VycyBvZiBhIHRhcmJhbGwvemlwYmFsbCBjcmVhdGVkIGJ5ICdn -aXQgYXJjaGl2ZScgb3IgZ2l0aHViJ3MKICAgICMgZG93bmxvYWQtZnJvbS10 -YWcgZmVhdHVyZSBvciB0aGUgZXF1aXZhbGVudCBpbiBvdGhlciBWQ1Nlcy4K -CiAgICBnZXRfa2V5d29yZHNfZiA9IGhhbmRsZXJzLmdldCgiZ2V0X2tleXdv -cmRzIikKICAgIGZyb21fa2V5d29yZHNfZiA9IGhhbmRsZXJzLmdldCgia2V5 -d29yZHMiKQogICAgaWYgZ2V0X2tleXdvcmRzX2YgYW5kIGZyb21fa2V5d29y -ZHNfZjoKICAgICAgICB0cnk6CiAgICAgICAgICAgIGtleXdvcmRzID0gZ2V0 -X2tleXdvcmRzX2YodmVyc2lvbmZpbGVfYWJzKQogICAgICAgICAgICB2ZXIg -PSBmcm9tX2tleXdvcmRzX2Yoa2V5d29yZHMsIGNmZy50YWdfcHJlZml4LCB2 -ZXJib3NlKQogICAgICAgICAgICBpZiB2ZXJib3NlOgogICAgICAgICAgICAg -ICAgcHJpbnQoImdvdCB2ZXJzaW9uIGZyb20gZXhwYW5kZWQga2V5d29yZCAl -cyIgJSB2ZXIpCiAgICAgICAgICAgIHJldHVybiB2ZXIKICAgICAgICBleGNl -cHQgTm90VGhpc01ldGhvZDoKICAgICAgICAgICAgcGFzcwoKICAgIHRyeToK -ICAgICAgICB2ZXIgPSB2ZXJzaW9uc19mcm9tX2ZpbGUodmVyc2lvbmZpbGVf -YWJzKQogICAgICAgIGlmIHZlcmJvc2U6CiAgICAgICAgICAgIHByaW50KCJn -b3QgdmVyc2lvbiBmcm9tIGZpbGUgJXMgJXMiICUgKHZlcnNpb25maWxlX2Fi -cywgdmVyKSkKICAgICAgICByZXR1cm4gdmVyCiAgICBleGNlcHQgTm90VGhp -c01ldGhvZDoKICAgICAgICBwYXNzCgogICAgZnJvbV92Y3NfZiA9IGhhbmRs -ZXJzLmdldCgicGllY2VzX2Zyb21fdmNzIikKICAgIGlmIGZyb21fdmNzX2Y6 -CiAgICAgICAgdHJ5OgogICAgICAgICAgICBwaWVjZXMgPSBmcm9tX3Zjc19m -KGNmZy50YWdfcHJlZml4LCByb290LCB2ZXJib3NlKQogICAgICAgICAgICB2 -ZXIgPSByZW5kZXIocGllY2VzLCBjZmcuc3R5bGUpCiAgICAgICAgICAgIGlm -IHZlcmJvc2U6CiAgICAgICAgICAgICAgICBwcmludCgiZ290IHZlcnNpb24g -ZnJvbSBWQ1MgJXMiICUgdmVyKQogICAgICAgICAgICByZXR1cm4gdmVyCiAg -ICAgICAgZXhjZXB0IE5vdFRoaXNNZXRob2Q6CiAgICAgICAgICAgIHBhc3MK -CiAgICB0cnk6CiAgICAgICAgaWYgY2ZnLnBhcmVudGRpcl9wcmVmaXg6CiAg -ICAgICAgICAgIHZlciA9IHZlcnNpb25zX2Zyb21fcGFyZW50ZGlyKGNmZy5w -YXJlbnRkaXJfcHJlZml4LCByb290LCB2ZXJib3NlKQogICAgICAgICAgICBp -ZiB2ZXJib3NlOgogICAgICAgICAgICAgICAgcHJpbnQoImdvdCB2ZXJzaW9u -IGZyb20gcGFyZW50ZGlyICVzIiAlIHZlcikKICAgICAgICAgICAgcmV0dXJu -IHZlcgogICAgZXhjZXB0IE5vdFRoaXNNZXRob2Q6CiAgICAgICAgcGFzcwoK -ICAgIGlmIHZlcmJvc2U6CiAgICAgICAgcHJpbnQoInVuYWJsZSB0byBjb21w -dXRlIHZlcnNpb24iKQoKICAgIHJldHVybiB7InZlcnNpb24iOiAiMCt1bmtu -b3duIiwgImZ1bGwtcmV2aXNpb25pZCI6IE5vbmUsCiAgICAgICAgICAgICJk -aXJ0eSI6IE5vbmUsICJlcnJvciI6ICJ1bmFibGUgdG8gY29tcHV0ZSB2ZXJz -aW9uIiwKICAgICAgICAgICAgImRhdGUiOiBOb25lfQoKCmRlZiBnZXRfdmVy -c2lvbigpIC0+IHN0cjoKICAgICIiIkdldCB0aGUgc2hvcnQgdmVyc2lvbiBz -dHJpbmcgZm9yIHRoaXMgcHJvamVjdC4iIiIKICAgIHJldHVybiBnZXRfdmVy -c2lvbnMoKVsidmVyc2lvbiJdCgoKZGVmIGdldF9jbWRjbGFzcyhjbWRjbGFz -czogT3B0aW9uYWxbRGljdFtzdHIsIEFueV1dID0gTm9uZSk6CiAgICAiIiJH -ZXQgdGhlIGN1c3RvbSBzZXR1cHRvb2xzIHN1YmNsYXNzZXMgdXNlZCBieSBW -ZXJzaW9uZWVyLgoKICAgIElmIHRoZSBwYWNrYWdlIHVzZXMgYSBkaWZmZXJl -bnQgY21kY2xhc3MgKGUuZy4gb25lIGZyb20gbnVtcHkpLCBpdAogICAgc2hv -dWxkIGJlIHByb3ZpZGUgYXMgYW4gYXJndW1lbnQuCiAgICAiIiIKICAgIGlm -ICJ2ZXJzaW9uZWVyIiBpbiBzeXMubW9kdWxlczoKICAgICAgICBkZWwgc3lz -Lm1vZHVsZXNbInZlcnNpb25lZXIiXQogICAgICAgICMgdGhpcyBmaXhlcyB0 -aGUgInB5dGhvbiBzZXR1cC5weSBkZXZlbG9wIiBjYXNlIChhbHNvICdpbnN0 -YWxsJyBhbmQKICAgICAgICAjICdlYXN5X2luc3RhbGwgLicpLCBpbiB3aGlj -aCBzdWJkZXBlbmRlbmNpZXMgb2YgdGhlIG1haW4gcHJvamVjdCBhcmUKICAg -ICAgICAjIGJ1aWx0ICh1c2luZyBzZXR1cC5weSBiZGlzdF9lZ2cpIGluIHRo -ZSBzYW1lIHB5dGhvbiBwcm9jZXNzLiBBc3N1bWUKICAgICAgICAjIGEgbWFp -biBwcm9qZWN0IEEgYW5kIGEgZGVwZW5kZW5jeSBCLCB3aGljaCB1c2UgZGlm -ZmVyZW50IHZlcnNpb25zCiAgICAgICAgIyBvZiBWZXJzaW9uZWVyLiBBJ3Mg -c2V0dXAucHkgaW1wb3J0cyBBJ3MgVmVyc2lvbmVlciwgbGVhdmluZyBpdCBp -bgogICAgICAgICMgc3lzLm1vZHVsZXMgYnkgdGhlIHRpbWUgQidzIHNldHVw -LnB5IGlzIGV4ZWN1dGVkLCBjYXVzaW5nIEIgdG8gcnVuCiAgICAgICAgIyB3 -aXRoIHRoZSB3cm9uZyB2ZXJzaW9uZWVyLiBTZXR1cHRvb2xzIHdyYXBzIHRo -ZSBzdWItZGVwIGJ1aWxkcyBpbiBhCiAgICAgICAgIyBzYW5kYm94IHRoYXQg -cmVzdG9yZXMgc3lzLm1vZHVsZXMgdG8gaXQncyBwcmUtYnVpbGQgc3RhdGUs -IHNvIHRoZQogICAgICAgICMgcGFyZW50IGlzIHByb3RlY3RlZCBhZ2FpbnN0 -IHRoZSBjaGlsZCdzICJpbXBvcnQgdmVyc2lvbmVlciIuIEJ5CiAgICAgICAg -IyByZW1vdmluZyBvdXJzZWx2ZXMgZnJvbSBzeXMubW9kdWxlcyBoZXJlLCBi -ZWZvcmUgdGhlIGNoaWxkIGJ1aWxkCiAgICAgICAgIyBoYXBwZW5zLCB3ZSBw -cm90ZWN0IHRoZSBjaGlsZCBmcm9tIHRoZSBwYXJlbnQncyB2ZXJzaW9uZWVy -IHRvby4KICAgICAgICAjIEFsc28gc2VlIGh0dHBzOi8vZ2l0aHViLmNvbS9w -eXRob24tdmVyc2lvbmVlci9weXRob24tdmVyc2lvbmVlci9pc3N1ZXMvNTIK -CiAgICBjbWRzID0ge30gaWYgY21kY2xhc3MgaXMgTm9uZSBlbHNlIGNtZGNs -YXNzLmNvcHkoKQoKICAgICMgd2UgYWRkICJ2ZXJzaW9uIiB0byBzZXR1cHRv -b2xzCiAgICBmcm9tIHNldHVwdG9vbHMgaW1wb3J0IENvbW1hbmQKCiAgICBj -bGFzcyBjbWRfdmVyc2lvbihDb21tYW5kKToKICAgICAgICBkZXNjcmlwdGlv -biA9ICJyZXBvcnQgZ2VuZXJhdGVkIHZlcnNpb24gc3RyaW5nIgogICAgICAg -IHVzZXJfb3B0aW9uczogTGlzdFtUdXBsZVtzdHIsIHN0ciwgc3RyXV0gPSBb -XQogICAgICAgIGJvb2xlYW5fb3B0aW9uczogTGlzdFtzdHJdID0gW10KCiAg -ICAgICAgZGVmIGluaXRpYWxpemVfb3B0aW9ucyhzZWxmKSAtPiBOb25lOgog -ICAgICAgICAgICBwYXNzCgogICAgICAgIGRlZiBmaW5hbGl6ZV9vcHRpb25z -KHNlbGYpIC0+IE5vbmU6CiAgICAgICAgICAgIHBhc3MKCiAgICAgICAgZGVm -IHJ1bihzZWxmKSAtPiBOb25lOgogICAgICAgICAgICB2ZXJzID0gZ2V0X3Zl -cnNpb25zKHZlcmJvc2U9VHJ1ZSkKICAgICAgICAgICAgcHJpbnQoIlZlcnNp -b246ICVzIiAlIHZlcnNbInZlcnNpb24iXSkKICAgICAgICAgICAgcHJpbnQo -IiBmdWxsLXJldmlzaW9uaWQ6ICVzIiAlIHZlcnMuZ2V0KCJmdWxsLXJldmlz -aW9uaWQiKSkKICAgICAgICAgICAgcHJpbnQoIiBkaXJ0eTogJXMiICUgdmVy -cy5nZXQoImRpcnR5IikpCiAgICAgICAgICAgIHByaW50KCIgZGF0ZTogJXMi -ICUgdmVycy5nZXQoImRhdGUiKSkKICAgICAgICAgICAgaWYgdmVyc1siZXJy -b3IiXToKICAgICAgICAgICAgICAgIHByaW50KCIgZXJyb3I6ICVzIiAlIHZl -cnNbImVycm9yIl0pCiAgICBjbWRzWyJ2ZXJzaW9uIl0gPSBjbWRfdmVyc2lv -bgoKICAgICMgd2Ugb3ZlcnJpZGUgImJ1aWxkX3B5IiBpbiBzZXR1cHRvb2xz -CiAgICAjCiAgICAjIG1vc3QgaW52b2NhdGlvbiBwYXRod2F5cyBlbmQgdXAg -cnVubmluZyBidWlsZF9weToKICAgICMgIGRpc3R1dGlscy9idWlsZCAtPiBi -dWlsZF9weQogICAgIyAgZGlzdHV0aWxzL2luc3RhbGwgLT4gZGlzdHV0aWxz -L2J1aWxkIC0+Li4KICAgICMgIHNldHVwdG9vbHMvYmRpc3Rfd2hlZWwgLT4g -ZGlzdHV0aWxzL2luc3RhbGwgLT4uLgogICAgIyAgc2V0dXB0b29scy9iZGlz -dF9lZ2cgLT4gZGlzdHV0aWxzL2luc3RhbGxfbGliIC0+IGJ1aWxkX3B5CiAg -ICAjICBzZXR1cHRvb2xzL2luc3RhbGwgLT4gYmRpc3RfZWdnIC0+Li4KICAg -ICMgIHNldHVwdG9vbHMvZGV2ZWxvcCAtPiA/CiAgICAjICBwaXAgaW5zdGFs -bDoKICAgICMgICBjb3BpZXMgc291cmNlIHRyZWUgdG8gYSB0ZW1wZGlyIGJl -Zm9yZSBydW5uaW5nIGVnZ19pbmZvL2V0YwogICAgIyAgIGlmIC5naXQgaXNu -J3QgY29waWVkIHRvbywgJ2dpdCBkZXNjcmliZScgd2lsbCBmYWlsCiAgICAj -ICAgdGhlbiBkb2VzIHNldHVwLnB5IGJkaXN0X3doZWVsLCBvciBzb21ldGlt -ZXMgc2V0dXAucHkgaW5zdGFsbAogICAgIyAgc2V0dXAucHkgZWdnX2luZm8g -LT4gPwoKICAgICMgcGlwIGluc3RhbGwgLWUgLiBhbmQgc2V0dXB0b29sL2Vk -aXRhYmxlX3doZWVsIHdpbGwgaW52b2tlIGJ1aWxkX3B5CiAgICAjIGJ1dCB0 -aGUgYnVpbGRfcHkgY29tbWFuZCBpcyBub3QgZXhwZWN0ZWQgdG8gY29weSBh -bnkgZmlsZXMuCgogICAgIyB3ZSBvdmVycmlkZSBkaWZmZXJlbnQgImJ1aWxk -X3B5IiBjb21tYW5kcyBmb3IgYm90aCBlbnZpcm9ubWVudHMKICAgIGlmICdi -dWlsZF9weScgaW4gY21kczoKICAgICAgICBfYnVpbGRfcHk6IEFueSA9IGNt -ZHNbJ2J1aWxkX3B5J10KICAgIGVsc2U6CiAgICAgICAgZnJvbSBzZXR1cHRv -b2xzLmNvbW1hbmQuYnVpbGRfcHkgaW1wb3J0IGJ1aWxkX3B5IGFzIF9idWls -ZF9weQoKICAgIGNsYXNzIGNtZF9idWlsZF9weShfYnVpbGRfcHkpOgogICAg -ICAgIGRlZiBydW4oc2VsZikgLT4gTm9uZToKICAgICAgICAgICAgcm9vdCA9 -IGdldF9yb290KCkKICAgICAgICAgICAgY2ZnID0gZ2V0X2NvbmZpZ19mcm9t -X3Jvb3Qocm9vdCkKICAgICAgICAgICAgdmVyc2lvbnMgPSBnZXRfdmVyc2lv -bnMoKQogICAgICAgICAgICBfYnVpbGRfcHkucnVuKHNlbGYpCiAgICAgICAg -ICAgIGlmIGdldGF0dHIoc2VsZiwgImVkaXRhYmxlX21vZGUiLCBGYWxzZSk6 -CiAgICAgICAgICAgICAgICAjIER1cmluZyBlZGl0YWJsZSBpbnN0YWxscyBg -LnB5YCBhbmQgZGF0YSBmaWxlcyBhcmUKICAgICAgICAgICAgICAgICMgbm90 -IGNvcGllZCB0byBidWlsZF9saWIKICAgICAgICAgICAgICAgIHJldHVybgog -ICAgICAgICAgICAjIG5vdyBsb2NhdGUgX3ZlcnNpb24ucHkgaW4gdGhlIG5l -dyBidWlsZC8gZGlyZWN0b3J5IGFuZCByZXBsYWNlCiAgICAgICAgICAgICMg -aXQgd2l0aCBhbiB1cGRhdGVkIHZhbHVlCiAgICAgICAgICAgIGlmIGNmZy52 -ZXJzaW9uZmlsZV9idWlsZDoKICAgICAgICAgICAgICAgIHRhcmdldF92ZXJz -aW9uZmlsZSA9IG9zLnBhdGguam9pbihzZWxmLmJ1aWxkX2xpYiwKICAgICAg -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBj -ZmcudmVyc2lvbmZpbGVfYnVpbGQpCiAgICAgICAgICAgICAgICBwcmludCgi -VVBEQVRJTkcgJXMiICUgdGFyZ2V0X3ZlcnNpb25maWxlKQogICAgICAgICAg -ICAgICAgd3JpdGVfdG9fdmVyc2lvbl9maWxlKHRhcmdldF92ZXJzaW9uZmls -ZSwgdmVyc2lvbnMpCiAgICBjbWRzWyJidWlsZF9weSJdID0gY21kX2J1aWxk -X3B5CgogICAgaWYgJ2J1aWxkX2V4dCcgaW4gY21kczoKICAgICAgICBfYnVp -bGRfZXh0OiBBbnkgPSBjbWRzWydidWlsZF9leHQnXQogICAgZWxzZToKICAg -ICAgICBmcm9tIHNldHVwdG9vbHMuY29tbWFuZC5idWlsZF9leHQgaW1wb3J0 -IGJ1aWxkX2V4dCBhcyBfYnVpbGRfZXh0CgogICAgY2xhc3MgY21kX2J1aWxk -X2V4dChfYnVpbGRfZXh0KToKICAgICAgICBkZWYgcnVuKHNlbGYpIC0+IE5v -bmU6CiAgICAgICAgICAgIHJvb3QgPSBnZXRfcm9vdCgpCiAgICAgICAgICAg -IGNmZyA9IGdldF9jb25maWdfZnJvbV9yb290KHJvb3QpCiAgICAgICAgICAg -IHZlcnNpb25zID0gZ2V0X3ZlcnNpb25zKCkKICAgICAgICAgICAgX2J1aWxk -X2V4dC5ydW4oc2VsZikKICAgICAgICAgICAgaWYgc2VsZi5pbnBsYWNlOgog -ICAgICAgICAgICAgICAgIyBidWlsZF9leHQgLS1pbnBsYWNlIHdpbGwgb25s -eSBidWlsZCBleHRlbnNpb25zIGluCiAgICAgICAgICAgICAgICAjIGJ1aWxk -L2xpYjwuLj4gZGlyIHdpdGggbm8gX3ZlcnNpb24ucHkgdG8gd3JpdGUgdG8u -CiAgICAgICAgICAgICAgICAjIEFzIGluIHBsYWNlIGJ1aWxkcyB3aWxsIGFs -cmVhZHkgaGF2ZSBhIF92ZXJzaW9uLnB5CiAgICAgICAgICAgICAgICAjIGlu -IHRoZSBtb2R1bGUgZGlyLCB3ZSBkbyBub3QgbmVlZCB0byB3cml0ZSBvbmUu -CiAgICAgICAgICAgICAgICByZXR1cm4KICAgICAgICAgICAgIyBub3cgbG9j -YXRlIF92ZXJzaW9uLnB5IGluIHRoZSBuZXcgYnVpbGQvIGRpcmVjdG9yeSBh -bmQgcmVwbGFjZQogICAgICAgICAgICAjIGl0IHdpdGggYW4gdXBkYXRlZCB2 -YWx1ZQogICAgICAgICAgICBpZiBub3QgY2ZnLnZlcnNpb25maWxlX2J1aWxk -OgogICAgICAgICAgICAgICAgcmV0dXJuCiAgICAgICAgICAgIHRhcmdldF92 -ZXJzaW9uZmlsZSA9IG9zLnBhdGguam9pbihzZWxmLmJ1aWxkX2xpYiwKICAg -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIGNm -Zy52ZXJzaW9uZmlsZV9idWlsZCkKICAgICAgICAgICAgaWYgbm90IG9zLnBh -dGguZXhpc3RzKHRhcmdldF92ZXJzaW9uZmlsZSk6CiAgICAgICAgICAgICAg -ICBwcmludChmIldhcm5pbmc6IHt0YXJnZXRfdmVyc2lvbmZpbGV9IGRvZXMg -bm90IGV4aXN0LCBza2lwcGluZyAiCiAgICAgICAgICAgICAgICAgICAgICAi -dmVyc2lvbiB1cGRhdGUuIFRoaXMgY2FuIGhhcHBlbiBpZiB5b3UgYXJlIHJ1 -bm5pbmcgYnVpbGRfZXh0ICIKICAgICAgICAgICAgICAgICAgICAgICJ3aXRo -b3V0IGZpcnN0IHJ1bm5pbmcgYnVpbGRfcHkuIikKICAgICAgICAgICAgICAg -IHJldHVybgogICAgICAgICAgICBwcmludCgiVVBEQVRJTkcgJXMiICUgdGFy -Z2V0X3ZlcnNpb25maWxlKQogICAgICAgICAgICB3cml0ZV90b192ZXJzaW9u -X2ZpbGUodGFyZ2V0X3ZlcnNpb25maWxlLCB2ZXJzaW9ucykKICAgIGNtZHNb -ImJ1aWxkX2V4dCJdID0gY21kX2J1aWxkX2V4dAoKICAgIGlmICJjeF9GcmVl -emUiIGluIHN5cy5tb2R1bGVzOiAgIyBjeF9mcmVlemUgZW5hYmxlZD8KICAg -ICAgICBmcm9tIGN4X0ZyZWV6ZS5kaXN0IGltcG9ydCBidWlsZF9leGUgYXMg -X2J1aWxkX2V4ZSAgIyB0eXBlOiBpZ25vcmUKICAgICAgICAjIG5jemVjenVs -aW4gcmVwb3J0cyB0aGF0IHB5MmV4ZSB3b24ndCBsaWtlIHRoZSBwZXA0NDAt -c3R5bGUgc3RyaW5nCiAgICAgICAgIyBhcyBGSUxFVkVSU0lPTiwgYnV0IGl0 -IGNhbiBiZSB1c2VkIGZvciBQUk9EVUNUVkVSU0lPTiwgZS5nLgogICAgICAg -ICMgc2V0dXAoY29uc29sZT1bewogICAgICAgICMgICAidmVyc2lvbiI6IHZl -cnNpb25lZXIuZ2V0X3ZlcnNpb24oKS5zcGxpdCgiKyIsIDEpWzBdLCAjIEZJ -TEVWRVJTSU9OCiAgICAgICAgIyAgICJwcm9kdWN0X3ZlcnNpb24iOiB2ZXJz -aW9uZWVyLmdldF92ZXJzaW9uKCksCiAgICAgICAgIyAgIC4uLgoKICAgICAg -ICBjbGFzcyBjbWRfYnVpbGRfZXhlKF9idWlsZF9leGUpOgogICAgICAgICAg -ICBkZWYgcnVuKHNlbGYpIC0+IE5vbmU6CiAgICAgICAgICAgICAgICByb290 -ID0gZ2V0X3Jvb3QoKQogICAgICAgICAgICAgICAgY2ZnID0gZ2V0X2NvbmZp -Z19mcm9tX3Jvb3Qocm9vdCkKICAgICAgICAgICAgICAgIHZlcnNpb25zID0g -Z2V0X3ZlcnNpb25zKCkKICAgICAgICAgICAgICAgIHRhcmdldF92ZXJzaW9u -ZmlsZSA9IGNmZy52ZXJzaW9uZmlsZV9zb3VyY2UKICAgICAgICAgICAgICAg -IHByaW50KCJVUERBVElORyAlcyIgJSB0YXJnZXRfdmVyc2lvbmZpbGUpCiAg -ICAgICAgICAgICAgICB3cml0ZV90b192ZXJzaW9uX2ZpbGUodGFyZ2V0X3Zl -cnNpb25maWxlLCB2ZXJzaW9ucykKCiAgICAgICAgICAgICAgICBfYnVpbGRf -ZXhlLnJ1bihzZWxmKQogICAgICAgICAgICAgICAgb3MudW5saW5rKHRhcmdl -dF92ZXJzaW9uZmlsZSkKICAgICAgICAgICAgICAgIHdpdGggb3BlbihjZmcu -dmVyc2lvbmZpbGVfc291cmNlLCAidyIpIGFzIGY6CiAgICAgICAgICAgICAg -ICAgICAgTE9ORyA9IExPTkdfVkVSU0lPTl9QWVtjZmcuVkNTXQogICAgICAg -ICAgICAgICAgICAgIGYud3JpdGUoTE9ORyAlCiAgICAgICAgICAgICAgICAg -ICAgICAgICAgICB7IkRPTExBUiI6ICIkIiwKICAgICAgICAgICAgICAgICAg -ICAgICAgICAgICAiU1RZTEUiOiBjZmcuc3R5bGUsCiAgICAgICAgICAgICAg -ICAgICAgICAgICAgICAgIlRBR19QUkVGSVgiOiBjZmcudGFnX3ByZWZpeCwK -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiUEFSRU5URElSX1BSRUZJ -WCI6IGNmZy5wYXJlbnRkaXJfcHJlZml4LAogICAgICAgICAgICAgICAgICAg -ICAgICAgICAgICJWRVJTSU9ORklMRV9TT1VSQ0UiOiBjZmcudmVyc2lvbmZp -bGVfc291cmNlLAogICAgICAgICAgICAgICAgICAgICAgICAgICAgIH0pCiAg -ICAgICAgY21kc1siYnVpbGRfZXhlIl0gPSBjbWRfYnVpbGRfZXhlCiAgICAg -ICAgZGVsIGNtZHNbImJ1aWxkX3B5Il0KCiAgICBpZiAncHkyZXhlJyBpbiBz -eXMubW9kdWxlczogICMgcHkyZXhlIGVuYWJsZWQ/CiAgICAgICAgdHJ5Ogog -ICAgICAgICAgICBmcm9tIHB5MmV4ZS5zZXR1cHRvb2xzX2J1aWxkZXhlIGlt -cG9ydCBweTJleGUgYXMgX3B5MmV4ZSAgIyB0eXBlOiBpZ25vcmUKICAgICAg -ICBleGNlcHQgSW1wb3J0RXJyb3I6CiAgICAgICAgICAgIGZyb20gcHkyZXhl -LmRpc3R1dGlsc19idWlsZGV4ZSBpbXBvcnQgcHkyZXhlIGFzIF9weTJleGUg -ICMgdHlwZTogaWdub3JlCgogICAgICAgIGNsYXNzIGNtZF9weTJleGUoX3B5 -MmV4ZSk6CiAgICAgICAgICAgIGRlZiBydW4oc2VsZikgLT4gTm9uZToKICAg -ICAgICAgICAgICAgIHJvb3QgPSBnZXRfcm9vdCgpCiAgICAgICAgICAgICAg -ICBjZmcgPSBnZXRfY29uZmlnX2Zyb21fcm9vdChyb290KQogICAgICAgICAg -ICAgICAgdmVyc2lvbnMgPSBnZXRfdmVyc2lvbnMoKQogICAgICAgICAgICAg -ICAgdGFyZ2V0X3ZlcnNpb25maWxlID0gY2ZnLnZlcnNpb25maWxlX3NvdXJj -ZQogICAgICAgICAgICAgICAgcHJpbnQoIlVQREFUSU5HICVzIiAlIHRhcmdl -dF92ZXJzaW9uZmlsZSkKICAgICAgICAgICAgICAgIHdyaXRlX3RvX3ZlcnNp -b25fZmlsZSh0YXJnZXRfdmVyc2lvbmZpbGUsIHZlcnNpb25zKQoKICAgICAg -ICAgICAgICAgIF9weTJleGUucnVuKHNlbGYpCiAgICAgICAgICAgICAgICBv -cy51bmxpbmsodGFyZ2V0X3ZlcnNpb25maWxlKQogICAgICAgICAgICAgICAg -d2l0aCBvcGVuKGNmZy52ZXJzaW9uZmlsZV9zb3VyY2UsICJ3IikgYXMgZjoK -ICAgICAgICAgICAgICAgICAgICBMT05HID0gTE9OR19WRVJTSU9OX1BZW2Nm -Zy5WQ1NdCiAgICAgICAgICAgICAgICAgICAgZi53cml0ZShMT05HICUKICAg -ICAgICAgICAgICAgICAgICAgICAgICAgIHsiRE9MTEFSIjogIiQiLAogICAg -ICAgICAgICAgICAgICAgICAgICAgICAgICJTVFlMRSI6IGNmZy5zdHlsZSwK -ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAiVEFHX1BSRUZJWCI6IGNm -Zy50YWdfcHJlZml4LAogICAgICAgICAgICAgICAgICAgICAgICAgICAgICJQ -QVJFTlRESVJfUFJFRklYIjogY2ZnLnBhcmVudGRpcl9wcmVmaXgsCiAgICAg -ICAgICAgICAgICAgICAgICAgICAgICAgIlZFUlNJT05GSUxFX1NPVVJDRSI6 -IGNmZy52ZXJzaW9uZmlsZV9zb3VyY2UsCiAgICAgICAgICAgICAgICAgICAg -ICAgICAgICAgfSkKICAgICAgICBjbWRzWyJweTJleGUiXSA9IGNtZF9weTJl -eGUKCiAgICAjIHNkaXN0IGZhcm1zIGl0cyBmaWxlIGxpc3QgYnVpbGRpbmcg -b3V0IHRvIGVnZ19pbmZvCiAgICBpZiAnZWdnX2luZm8nIGluIGNtZHM6CiAg -ICAgICAgX2VnZ19pbmZvOiBBbnkgPSBjbWRzWydlZ2dfaW5mbyddCiAgICBl -bHNlOgogICAgICAgIGZyb20gc2V0dXB0b29scy5jb21tYW5kLmVnZ19pbmZv -IGltcG9ydCBlZ2dfaW5mbyBhcyBfZWdnX2luZm8KCiAgICBjbGFzcyBjbWRf -ZWdnX2luZm8oX2VnZ19pbmZvKToKICAgICAgICBkZWYgZmluZF9zb3VyY2Vz -KHNlbGYpIC0+IE5vbmU6CiAgICAgICAgICAgICMgZWdnX2luZm8uZmluZF9z -b3VyY2VzIGJ1aWxkcyB0aGUgbWFuaWZlc3QgbGlzdCBhbmQgd3JpdGVzIGl0 -CiAgICAgICAgICAgICMgaW4gb25lIHNob3QKICAgICAgICAgICAgc3VwZXIo -KS5maW5kX3NvdXJjZXMoKQoKICAgICAgICAgICAgIyBNb2RpZnkgdGhlIGZp -bGVsaXN0IGFuZCBub3JtYWxpemUgaXQKICAgICAgICAgICAgcm9vdCA9IGdl -dF9yb290KCkKICAgICAgICAgICAgY2ZnID0gZ2V0X2NvbmZpZ19mcm9tX3Jv -b3Qocm9vdCkKICAgICAgICAgICAgc2VsZi5maWxlbGlzdC5hcHBlbmQoJ3Zl -cnNpb25lZXIucHknKQogICAgICAgICAgICBpZiBjZmcudmVyc2lvbmZpbGVf -c291cmNlOgogICAgICAgICAgICAgICAgIyBUaGVyZSBhcmUgcmFyZSBjYXNl -cyB3aGVyZSB2ZXJzaW9uZmlsZV9zb3VyY2UgbWlnaHQgbm90IGJlCiAgICAg -ICAgICAgICAgICAjIGluY2x1ZGVkIGJ5IGRlZmF1bHQsIHNvIHdlIG11c3Qg -YmUgZXhwbGljaXQKICAgICAgICAgICAgICAgIHNlbGYuZmlsZWxpc3QuYXBw -ZW5kKGNmZy52ZXJzaW9uZmlsZV9zb3VyY2UpCiAgICAgICAgICAgIHNlbGYu -ZmlsZWxpc3Quc29ydCgpCiAgICAgICAgICAgIHNlbGYuZmlsZWxpc3QucmVt -b3ZlX2R1cGxpY2F0ZXMoKQoKICAgICAgICAgICAgIyBUaGUgd3JpdGUgbWV0 -aG9kIGlzIGhpZGRlbiBpbiB0aGUgbWFuaWZlc3RfbWFrZXIgaW5zdGFuY2Ug -dGhhdAogICAgICAgICAgICAjIGdlbmVyYXRlZCB0aGUgZmlsZWxpc3QgYW5k -IHdhcyB0aHJvd24gYXdheQogICAgICAgICAgICAjIFdlIHdpbGwgaW5zdGVh -ZCByZXBsaWNhdGUgdGhlaXIgZmluYWwgbm9ybWFsaXphdGlvbiAodG8gdW5p -Y29kZSwKICAgICAgICAgICAgIyBhbmQgUE9TSVgtc3R5bGUgcGF0aHMpCiAg -ICAgICAgICAgIGZyb20gc2V0dXB0b29scyBpbXBvcnQgdW5pY29kZV91dGls -cwogICAgICAgICAgICBub3JtYWxpemVkID0gW3VuaWNvZGVfdXRpbHMuZmls -ZXN5c19kZWNvZGUoZikucmVwbGFjZShvcy5zZXAsICcvJykKICAgICAgICAg -ICAgICAgICAgICAgICAgICBmb3IgZiBpbiBzZWxmLmZpbGVsaXN0LmZpbGVz -XQoKICAgICAgICAgICAgbWFuaWZlc3RfZmlsZW5hbWUgPSBvcy5wYXRoLmpv -aW4oc2VsZi5lZ2dfaW5mbywgJ1NPVVJDRVMudHh0JykKICAgICAgICAgICAg -d2l0aCBvcGVuKG1hbmlmZXN0X2ZpbGVuYW1lLCAndycpIGFzIGZvYmo6CiAg -ICAgICAgICAgICAgICBmb2JqLndyaXRlKCdcbicuam9pbihub3JtYWxpemVk -KSkKCiAgICBjbWRzWydlZ2dfaW5mbyddID0gY21kX2VnZ19pbmZvCgogICAg -IyB3ZSBvdmVycmlkZSBkaWZmZXJlbnQgInNkaXN0IiBjb21tYW5kcyBmb3Ig -Ym90aCBlbnZpcm9ubWVudHMKICAgIGlmICdzZGlzdCcgaW4gY21kczoKICAg -ICAgICBfc2Rpc3Q6IEFueSA9IGNtZHNbJ3NkaXN0J10KICAgIGVsc2U6CiAg -ICAgICAgZnJvbSBzZXR1cHRvb2xzLmNvbW1hbmQuc2Rpc3QgaW1wb3J0IHNk -aXN0IGFzIF9zZGlzdAoKICAgIGNsYXNzIGNtZF9zZGlzdChfc2Rpc3QpOgog -ICAgICAgIGRlZiBydW4oc2VsZikgLT4gTm9uZToKICAgICAgICAgICAgdmVy -c2lvbnMgPSBnZXRfdmVyc2lvbnMoKQogICAgICAgICAgICBzZWxmLl92ZXJz -aW9uZWVyX2dlbmVyYXRlZF92ZXJzaW9ucyA9IHZlcnNpb25zCiAgICAgICAg -ICAgICMgdW5sZXNzIHdlIHVwZGF0ZSB0aGlzLCB0aGUgY29tbWFuZCB3aWxs -IGtlZXAgdXNpbmcgdGhlIG9sZAogICAgICAgICAgICAjIHZlcnNpb24KICAg -ICAgICAgICAgc2VsZi5kaXN0cmlidXRpb24ubWV0YWRhdGEudmVyc2lvbiA9 -IHZlcnNpb25zWyJ2ZXJzaW9uIl0KICAgICAgICAgICAgcmV0dXJuIF9zZGlz -dC5ydW4oc2VsZikKCiAgICAgICAgZGVmIG1ha2VfcmVsZWFzZV90cmVlKHNl -bGYsIGJhc2VfZGlyOiBzdHIsIGZpbGVzOiBMaXN0W3N0cl0pIC0+IE5vbmU6 -CiAgICAgICAgICAgIHJvb3QgPSBnZXRfcm9vdCgpCiAgICAgICAgICAgIGNm -ZyA9IGdldF9jb25maWdfZnJvbV9yb290KHJvb3QpCiAgICAgICAgICAgIF9z -ZGlzdC5tYWtlX3JlbGVhc2VfdHJlZShzZWxmLCBiYXNlX2RpciwgZmlsZXMp -CiAgICAgICAgICAgICMgbm93IGxvY2F0ZSBfdmVyc2lvbi5weSBpbiB0aGUg -bmV3IGJhc2VfZGlyIGRpcmVjdG9yeQogICAgICAgICAgICAjIChyZW1lbWJl -cmluZyB0aGF0IGl0IG1heSBiZSBhIGhhcmRsaW5rKSBhbmQgcmVwbGFjZSBp -dCB3aXRoIGFuCiAgICAgICAgICAgICMgdXBkYXRlZCB2YWx1ZQogICAgICAg -ICAgICB0YXJnZXRfdmVyc2lvbmZpbGUgPSBvcy5wYXRoLmpvaW4oYmFzZV9k -aXIsIGNmZy52ZXJzaW9uZmlsZV9zb3VyY2UpCiAgICAgICAgICAgIHByaW50 -KCJVUERBVElORyAlcyIgJSB0YXJnZXRfdmVyc2lvbmZpbGUpCiAgICAgICAg -ICAgIHdyaXRlX3RvX3ZlcnNpb25fZmlsZSh0YXJnZXRfdmVyc2lvbmZpbGUs -CiAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICBzZWxmLl92ZXJz -aW9uZWVyX2dlbmVyYXRlZF92ZXJzaW9ucykKICAgIGNtZHNbInNkaXN0Il0g -PSBjbWRfc2Rpc3QKCiAgICByZXR1cm4gY21kcwoKCkNPTkZJR19FUlJPUiA9 -ICIiIgpzZXR1cC5jZmcgaXMgbWlzc2luZyB0aGUgbmVjZXNzYXJ5IFZlcnNp -b25lZXIgY29uZmlndXJhdGlvbi4gWW91IG5lZWQKYSBzZWN0aW9uIGxpa2U6 -CgogW3ZlcnNpb25lZXJdCiBWQ1MgPSBnaXQKIHN0eWxlID0gcGVwNDQwCiB2 -ZXJzaW9uZmlsZV9zb3VyY2UgPSBzcmMvbXlwcm9qZWN0L192ZXJzaW9uLnB5 -CiB2ZXJzaW9uZmlsZV9idWlsZCA9IG15cHJvamVjdC9fdmVyc2lvbi5weQog -dGFnX3ByZWZpeCA9CiBwYXJlbnRkaXJfcHJlZml4ID0gbXlwcm9qZWN0LQoK -WW91IHdpbGwgYWxzbyBuZWVkIHRvIGVkaXQgeW91ciBzZXR1cC5weSB0byB1 -c2UgdGhlIHJlc3VsdHM6CgogaW1wb3J0IHZlcnNpb25lZXIKIHNldHVwKHZl -cnNpb249dmVyc2lvbmVlci5nZXRfdmVyc2lvbigpLAogICAgICAgY21kY2xh -c3M9dmVyc2lvbmVlci5nZXRfY21kY2xhc3MoKSwgLi4uKQoKUGxlYXNlIHJl -YWQgdGhlIGRvY3N0cmluZyBpbiAuL3ZlcnNpb25lZXIucHkgZm9yIGNvbmZp -Z3VyYXRpb24gaW5zdHJ1Y3Rpb25zLAplZGl0IHNldHVwLmNmZywgYW5kIHJl -LXJ1biB0aGUgaW5zdGFsbGVyIG9yICdweXRob24gdmVyc2lvbmVlci5weSBz -ZXR1cCcuCiIiIgoKU0FNUExFX0NPTkZJRyA9ICIiIgojIFNlZSB0aGUgZG9j -c3RyaW5nIGluIHZlcnNpb25lZXIucHkgZm9yIGluc3RydWN0aW9ucy4gTm90 -ZSB0aGF0IHlvdSBtdXN0CiMgcmUtcnVuICd2ZXJzaW9uZWVyLnB5IHNldHVw -JyBhZnRlciBjaGFuZ2luZyB0aGlzIHNlY3Rpb24sIGFuZCBjb21taXQgdGhl -CiMgcmVzdWx0aW5nIGZpbGVzLgoKW3ZlcnNpb25lZXJdCiNWQ1MgPSBnaXQK -I3N0eWxlID0gcGVwNDQwCiN2ZXJzaW9uZmlsZV9zb3VyY2UgPQojdmVyc2lv -bmZpbGVfYnVpbGQgPQojdGFnX3ByZWZpeCA9CiNwYXJlbnRkaXJfcHJlZml4 -ID0KCiIiIgoKT0xEX1NOSVBQRVQgPSAiIiIKZnJvbSAuX3ZlcnNpb24gaW1w -b3J0IGdldF92ZXJzaW9ucwpfX3ZlcnNpb25fXyA9IGdldF92ZXJzaW9ucygp -Wyd2ZXJzaW9uJ10KZGVsIGdldF92ZXJzaW9ucwoiIiIKCklOSVRfUFlfU05J -UFBFVCA9ICIiIgpmcm9tIC4gaW1wb3J0IHswfQpfX3ZlcnNpb25fXyA9IHsw -fS5nZXRfdmVyc2lvbnMoKVsndmVyc2lvbiddCiIiIgoKCmRlZiBkb19zZXR1 -cCgpIC0+IGludDoKICAgICIiIkRvIG1haW4gVkNTLWluZGVwZW5kZW50IHNl -dHVwIGZ1bmN0aW9uIGZvciBpbnN0YWxsaW5nIFZlcnNpb25lZXIuIiIiCiAg -ICByb290ID0gZ2V0X3Jvb3QoKQogICAgdHJ5OgogICAgICAgIGNmZyA9IGdl -dF9jb25maWdfZnJvbV9yb290KHJvb3QpCiAgICBleGNlcHQgKE9TRXJyb3Is -IGNvbmZpZ3BhcnNlci5Ob1NlY3Rpb25FcnJvciwKICAgICAgICAgICAgY29u -ZmlncGFyc2VyLk5vT3B0aW9uRXJyb3IpIGFzIGU6CiAgICAgICAgaWYgaXNp -bnN0YW5jZShlLCAoT1NFcnJvciwgY29uZmlncGFyc2VyLk5vU2VjdGlvbkVy -cm9yKSk6CiAgICAgICAgICAgIHByaW50KCJBZGRpbmcgc2FtcGxlIHZlcnNp -b25lZXIgY29uZmlnIHRvIHNldHVwLmNmZyIsCiAgICAgICAgICAgICAgICAg -IGZpbGU9c3lzLnN0ZGVycikKICAgICAgICAgICAgd2l0aCBvcGVuKG9zLnBh -dGguam9pbihyb290LCAic2V0dXAuY2ZnIiksICJhIikgYXMgZjoKICAgICAg -ICAgICAgICAgIGYud3JpdGUoU0FNUExFX0NPTkZJRykKICAgICAgICBwcmlu -dChDT05GSUdfRVJST1IsIGZpbGU9c3lzLnN0ZGVycikKICAgICAgICByZXR1 -cm4gMQoKICAgIHByaW50KCIgY3JlYXRpbmcgJXMiICUgY2ZnLnZlcnNpb25m -aWxlX3NvdXJjZSkKICAgIHdpdGggb3BlbihjZmcudmVyc2lvbmZpbGVfc291 -cmNlLCAidyIpIGFzIGY6CiAgICAgICAgTE9ORyA9IExPTkdfVkVSU0lPTl9Q -WVtjZmcuVkNTXQogICAgICAgIGYud3JpdGUoTE9ORyAlIHsiRE9MTEFSIjog -IiQiLAogICAgICAgICAgICAgICAgICAgICAgICAiU1RZTEUiOiBjZmcuc3R5 -bGUsCiAgICAgICAgICAgICAgICAgICAgICAgICJUQUdfUFJFRklYIjogY2Zn -LnRhZ19wcmVmaXgsCiAgICAgICAgICAgICAgICAgICAgICAgICJQQVJFTlRE -SVJfUFJFRklYIjogY2ZnLnBhcmVudGRpcl9wcmVmaXgsCiAgICAgICAgICAg -ICAgICAgICAgICAgICJWRVJTSU9ORklMRV9TT1VSQ0UiOiBjZmcudmVyc2lv -bmZpbGVfc291cmNlLAogICAgICAgICAgICAgICAgICAgICAgICB9KQoKICAg -IGlweSA9IG9zLnBhdGguam9pbihvcy5wYXRoLmRpcm5hbWUoY2ZnLnZlcnNp -b25maWxlX3NvdXJjZSksCiAgICAgICAgICAgICAgICAgICAgICAgIl9faW5p -dF9fLnB5IikKICAgIG1heWJlX2lweTogT3B0aW9uYWxbc3RyXSA9IGlweQog -ICAgaWYgb3MucGF0aC5leGlzdHMoaXB5KToKICAgICAgICB0cnk6CiAgICAg -ICAgICAgIHdpdGggb3BlbihpcHksICJyIikgYXMgZjoKICAgICAgICAgICAg -ICAgIG9sZCA9IGYucmVhZCgpCiAgICAgICAgZXhjZXB0IE9TRXJyb3I6CiAg -ICAgICAgICAgIG9sZCA9ICIiCiAgICAgICAgbW9kdWxlID0gb3MucGF0aC5z -cGxpdGV4dChvcy5wYXRoLmJhc2VuYW1lKGNmZy52ZXJzaW9uZmlsZV9zb3Vy -Y2UpKVswXQogICAgICAgIHNuaXBwZXQgPSBJTklUX1BZX1NOSVBQRVQuZm9y -bWF0KG1vZHVsZSkKICAgICAgICBpZiBPTERfU05JUFBFVCBpbiBvbGQ6CiAg -ICAgICAgICAgIHByaW50KCIgcmVwbGFjaW5nIGJvaWxlcnBsYXRlIGluICVz -IiAlIGlweSkKICAgICAgICAgICAgd2l0aCBvcGVuKGlweSwgInciKSBhcyBm -OgogICAgICAgICAgICAgICAgZi53cml0ZShvbGQucmVwbGFjZShPTERfU05J -UFBFVCwgc25pcHBldCkpCiAgICAgICAgZWxpZiBzbmlwcGV0IG5vdCBpbiBv -bGQ6CiAgICAgICAgICAgIHByaW50KCIgYXBwZW5kaW5nIHRvICVzIiAlIGlw -eSkKICAgICAgICAgICAgd2l0aCBvcGVuKGlweSwgImEiKSBhcyBmOgogICAg -ICAgICAgICAgICAgZi53cml0ZShzbmlwcGV0KQogICAgICAgIGVsc2U6CiAg -ICAgICAgICAgIHByaW50KCIgJXMgdW5tb2RpZmllZCIgJSBpcHkpCiAgICBl -bHNlOgogICAgICAgIHByaW50KCIgJXMgZG9lc24ndCBleGlzdCwgb2siICUg -aXB5KQogICAgICAgIG1heWJlX2lweSA9IE5vbmUKCiAgICAjIE1ha2UgVkNT -LXNwZWNpZmljIGNoYW5nZXMuIEZvciBnaXQsIHRoaXMgbWVhbnMgY3JlYXRp -bmcvY2hhbmdpbmcKICAgICMgLmdpdGF0dHJpYnV0ZXMgdG8gbWFyayBfdmVy -c2lvbi5weSBmb3IgZXhwb3J0LXN1YnN0IGtleXdvcmQKICAgICMgc3Vic3Rp -dHV0aW9uLgogICAgZG9fdmNzX2luc3RhbGwoY2ZnLnZlcnNpb25maWxlX3Nv -dXJjZSwgbWF5YmVfaXB5KQogICAgcmV0dXJuIDAKCgpkZWYgc2Nhbl9zZXR1 -cF9weSgpIC0+IGludDoKICAgICIiIlZhbGlkYXRlIHRoZSBjb250ZW50cyBv -ZiBzZXR1cC5weSBhZ2FpbnN0IFZlcnNpb25lZXIncyBleHBlY3RhdGlvbnMu -IiIiCiAgICBmb3VuZCA9IHNldCgpCiAgICBzZXR0ZXJzID0gRmFsc2UKICAg -IGVycm9ycyA9IDAKICAgIHdpdGggb3Blbigic2V0dXAucHkiLCAiciIpIGFz -IGY6CiAgICAgICAgZm9yIGxpbmUgaW4gZi5yZWFkbGluZXMoKToKICAgICAg -ICAgICAgaWYgImltcG9ydCB2ZXJzaW9uZWVyIiBpbiBsaW5lOgogICAgICAg -ICAgICAgICAgZm91bmQuYWRkKCJpbXBvcnQiKQogICAgICAgICAgICBpZiAi -dmVyc2lvbmVlci5nZXRfY21kY2xhc3MoKSIgaW4gbGluZToKICAgICAgICAg -ICAgICAgIGZvdW5kLmFkZCgiY21kY2xhc3MiKQogICAgICAgICAgICBpZiAi -dmVyc2lvbmVlci5nZXRfdmVyc2lvbigpIiBpbiBsaW5lOgogICAgICAgICAg -ICAgICAgZm91bmQuYWRkKCJnZXRfdmVyc2lvbiIpCiAgICAgICAgICAgIGlm -ICJ2ZXJzaW9uZWVyLlZDUyIgaW4gbGluZToKICAgICAgICAgICAgICAgIHNl -dHRlcnMgPSBUcnVlCiAgICAgICAgICAgIGlmICJ2ZXJzaW9uZWVyLnZlcnNp -b25maWxlX3NvdXJjZSIgaW4gbGluZToKICAgICAgICAgICAgICAgIHNldHRl -cnMgPSBUcnVlCiAgICBpZiBsZW4oZm91bmQpICE9IDM6CiAgICAgICAgcHJp -bnQoIiIpCiAgICAgICAgcHJpbnQoIllvdXIgc2V0dXAucHkgYXBwZWFycyB0 -byBiZSBtaXNzaW5nIHNvbWUgaW1wb3J0YW50IGl0ZW1zIikKICAgICAgICBw -cmludCgiKGJ1dCBJIG1pZ2h0IGJlIHdyb25nKS4gUGxlYXNlIG1ha2Ugc3Vy -ZSBpdCBoYXMgc29tZXRoaW5nIikKICAgICAgICBwcmludCgicm91Z2hseSBs -aWtlIHRoZSBmb2xsb3dpbmc6IikKICAgICAgICBwcmludCgiIikKICAgICAg -ICBwcmludCgiIGltcG9ydCB2ZXJzaW9uZWVyIikKICAgICAgICBwcmludCgi -IHNldHVwKCB2ZXJzaW9uPXZlcnNpb25lZXIuZ2V0X3ZlcnNpb24oKSwiKQog -ICAgICAgIHByaW50KCIgICAgICAgIGNtZGNsYXNzPXZlcnNpb25lZXIuZ2V0 -X2NtZGNsYXNzKCksICAuLi4pIikKICAgICAgICBwcmludCgiIikKICAgICAg -ICBlcnJvcnMgKz0gMQogICAgaWYgc2V0dGVyczoKICAgICAgICBwcmludCgi -WW91IHNob3VsZCByZW1vdmUgbGluZXMgbGlrZSAndmVyc2lvbmVlci5WQ1Mg -PSAnIGFuZCIpCiAgICAgICAgcHJpbnQoIid2ZXJzaW9uZWVyLnZlcnNpb25m -aWxlX3NvdXJjZSA9ICcgLiBUaGlzIGNvbmZpZ3VyYXRpb24iKQogICAgICAg -IHByaW50KCJub3cgbGl2ZXMgaW4gc2V0dXAuY2ZnLCBhbmQgc2hvdWxkIGJl -IHJlbW92ZWQgZnJvbSBzZXR1cC5weSIpCiAgICAgICAgcHJpbnQoIiIpCiAg -ICAgICAgZXJyb3JzICs9IDEKICAgIHJldHVybiBlcnJvcnMKCgpkZWYgc2V0 -dXBfY29tbWFuZCgpIC0+IE5vUmV0dXJuOgogICAgIiIiU2V0IHVwIFZlcnNp -b25lZXIgYW5kIGV4aXQgd2l0aCBhcHByb3ByaWF0ZSBlcnJvciBjb2RlLiIi -IgogICAgZXJyb3JzID0gZG9fc2V0dXAoKQogICAgZXJyb3JzICs9IHNjYW5f -c2V0dXBfcHkoKQogICAgc3lzLmV4aXQoMSBpZiBlcnJvcnMgZWxzZSAwKQoK -CmlmIF9fbmFtZV9fID09ICJfX21haW5fXyI6CiAgICBjbWQgPSBzeXMuYXJn -dlsxXQogICAgaWYgY21kID09ICJzZXR1cCI6CiAgICAgICAgc2V0dXBfY29t -bWFuZCgpCg== - -""" -newver = "0.29" - -VERSIONEER_PEP518 = True - -VERSIONEER = base64.b64decode(VERSIONEER_b64.encode('ASCII')) - - -# Stub overwritten by exec() -def setup_command() -> NoReturn: ... # type: ignore - -# Make versioneer usable via import -exec(VERSIONEER.decode(), globals()) - - -def detect_installed_version() -> str: - """Find version string in vendored versioneer - - Raises FileNotFoundError if missing. - """ - with open("versioneer.py") as fobj: - for i, line in enumerate(fobj): - if line.startswith("# Version: "): - return line[len("# Version: "):].strip() - if i > 5: - break - return "unknown version" - - -def vendor() -> None: - """Install versioneer into current directory""" - try: - oldver = detect_installed_version() - except FileNotFoundError: - pass - else: - print(f"replacing old versioneer.py ({oldver})") - - with open("versioneer.py", "wb") as fobj: - fobj.write(VERSIONEER) - print(f"versioneer.py ({newver}) installed into local tree") - - -def main() -> NoReturn: - usage = "Usage: versioneer install [--vendor|--no-vendor]" - if len(sys.argv) < 2 or len(sys.argv) > 3: - print(usage) - sys.exit(1) - - command = sys.argv[1] - mode = "--vendor" if len(sys.argv) == 2 else sys.argv[2] - - if command in ("version", "--version"): - print("versioneer (installer) %s" % newver) - sys.exit(0) - elif command in ("help", "-help", "--help"): - print(usage) - sys.exit(0) - elif command != "install" or mode not in ("--vendor", "--no-vendor"): - print(usage) - sys.exit(1) - - if mode == "--vendor": - vendor() - print("Now running 'versioneer.py setup' to install the generated files..") - - setup_command() - - -if __name__ == '__main__': - main()